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Abstract. In many applications such as video surveillance or defect detection, the perception of information
related to a scene is limited in areas with strong contrasts. The high dynamic range (HDR) capture technique
can deal with these limitations. The proposed method has the advantage of automatically selecting multiple
exposure times to make outputs more visible than fixed exposure ones. A real-time hardware implementation
of the HDR technique that shows more details both in dark and bright areas of a scene is an important line of
research. For this purpose, we built a dedicated smart camera that performs both capturing and HDR video
processing from three exposures. What is new in our work is shown through the following points: HDR
video capture through multiple exposure control, HDR memory management, HDR frame generation, and rep-
resentation under a hardware context. Our camera achieves a real-time HDR video output at 60 fps at 1.3 mega-
pixels and demonstrates the efficiency of our technique through an experimental result. Applications of this HDR
smart camera include the movie industry, the mass-consumer market, military, automotive industry, and sur-
veillance. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.53.10.102110]
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1 Introduction
Standard cameras have a limited dynamic range. In many
video and imaging systems, we have saturated zones in the
dark and illuminated areas of the captured image. These lim-
itations are due to large variations of the scene radiance, with
overexposed and underexposed areas in the single image.
The sequential capture of several images with different expo-
sure times can deal with the lack of information in extreme
lightning conditions.

According to Mantiuk et al.,1 there are two types of devi-
ces that can be used to capture the entire dynamic of a scene:
high dynamic range (HDR) sensors and standard sensors.
The HDR sensors are, by design, able to capture a wide
dynamic range with a single capture. However, these sensors
are still under development and are not suitable for
embedded and low cost applications. Another technique is
to use a standard low dynamic range (LDR) sensor. This
technique has several ways to proceed:

• changing the exposure time by multiple captures which
is the most common method;

• spatial exposition: capture simple, with a mask in front
of the sensor;

• multiple sensors with a shared light beam.

According to Gamal,2 the multiple capture technique is
the most efficient method, widely used in recent works.3–5

The creation an HDR image is done in three steps:

• recover the response curve of the system;
• blend pixels into radiance values;

• perform tone mapping to match the dynamic range of
the scene to that of the display device.

This technique is designed to calculate the light intensities
of real scenes, where each pixel is stored on a very large
dynamic range (up to 32-bit wide and more). It is, therefore,
necessary to have a large range of memory to store images
and to reconstruct the HDR image.

The three most popular algorithms for HDR recon-
struction are those of Debevec and Malik,6 Mitsunaga and
Nayar,7 and Robertson et al.8 A technical paper by
Yourganov9 compares the first two algorithms implemented
in C/C++ in real time on a personal computer (PC). The
results of computation time for an image are substantially
the same. The Mitsunaga algorithm is based on a flexible
parametric model able to calculate the response function
without the precise exposure times of the different images
to merge. They perform automatic rejection of the image
parts with significant effects of vignetting, or temporal var-
iations. Originally, the Debevec method was been developed
for photography. However, according to the research con-
ducted by Yourganov,9 this method can be easily applied
to digital video, both for static and dynamic scenes, if cap-
tures are fast enough that light changes between two con-
secutive frames can be safely ignored. Consequently, such
a method is widely used to produce HDR video by capturing
frames with alternating bright and dark exposures, as pointed
out by Tocci et al.10

HDR creating is followed by the tone mapping opera-
tion.11 It is used to render the HDR data to match the
dynamic range of conventional hardware displays. For exam-
ple, it converts 32- to 8-bit wide pixels ([0, 255]). There
are two types of tone mapping operators (TMOs): spatially
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uniform (global TMO) and spatially nonuniform (local
TMO). In our case, several algorithms seem to be imple-
mentable in real time due to fast computation capabilities,
whether global or local. The following is a list of methods
known for their efficiency and simplicity. These methods are
ordered from the fastest algorithm to the slowest algorithm
implemented in software:

• Durand and Dorsey12 (fast bilateral filtering for the dis-
play of HDR images);

• Duan et al.13 (tone-mapping HDR images by histogram
novel adjustment);

• Werman et al.14 (gradient domain HDR compression);
• Reinhard et al.15 (photographic tone reproduction for

digital images);
• Pattanaik et al.16 (time-dependent visual adaptation for

fast realistic image display);
• Drago et al.17 (adaptive logarithmic mapping for dis-

playing high contrast scenes).

Representing the reality as closely as possible is a crucial
aspect to be considered for any HDR system. Several pub-
lications have concerned the evaluation of tone mapping
methods.18 A study by Akyüz and Reinhard19 shows that
the method by Reinhard et al.,15 photographic tone mapping,
gives the best results in terms of the natural appearance in the
image. Another study by Drago et al.20 reaches the same con-
clusion. Cadík21 shows also results in line with the previous
ones since the Reinhard method is one of the best ranked
method. There is a surprising aspect in this paper: the global
part of the methods of tone mapping is critical for achieving
good visual results for real-world scenes.

In this paper, we propose an HDR smart camera based on
a parallel hardware architecture dedicated to the production
of real-time HDR video content from a set of different expo-
sures. From an end-user point of view, the HDR video must
be built and delivered at the full resolution and at the sensor
frame rate with no detectable latency from each new capture
and the frames previously stored. Moreover, this HDR
platform embeds all the necessary algorithms to auto-
matically evaluate the best exposure times for any visual
scene in order to provide the best HDR content. What is
new in this paper is shown through four steps. First, we cap-
ture images from the sensor with three alternating exposure
times, selected automatically by our multiple exposure con-
trol (MEC). Then, we manage reading and writing operations

in memory in order to have several video streams in parallel,
corresponding to the different exposure times. Under a
highly parallel context, we blend the three video streams
together with a modified version of a standard HDR
technique. Finally, a hardware implementation of a global
tone mapping technique is performed. We will begin this
paper by describing the existing works about the HDR
video technique in Sec. 2. Then, in Sec. 3, we will describe
our system in detail. Finally, some experiments and results
will follow this discussion in Secs. 4 and 5. Concluding
remarks are then presented in Sec. 6.

2 Related Work
We detail here the existing hardware architectures. We limit
ourselves to recent systems which can operate in real time,
whether they are focused exclusively on capture, HDR cre-
ating or tone mapping. Table 1 summarizes these methods.

In 2012, Gençtav and Akyüz28 developed a complete
system on a graphics processing unit (GPU) platform. The
tasks are performed in parallel with a pipelined structure.
Generating HDR and the tone mapping are done without
knowing the response curve of the camera. They use the
algorithm originally proposed by Debevec and Malik6 to
estimate the radiance values. Regarding the operation of
the tone mapping, the Reinhard et al.15 algorithm has been
chosen and implemented. Some results are identical to other
methods implemented on a central processing unit (CPU).
They reach a frame rate of 65 fps for producing HDR images
and 103 fps for performing the tone mapping. However, they
do not have time to load textures onto the GPU. The majority
of time is spent in sending pixels to the GPU. Radiance
computations and weighting have little impact on the speed
calculation and the frame rate of the final system.

The most popular complete HDR vision project is based
on the Mann et al.23 system. In 2012, a welding helmet com-
posed of two computer-controlled video cameras was pre-
sented. The data received by these cameras are recorded
line by line in an external memory. Several first in first out
(FIFOs) simultaneously store the pixels and read them line
by line. The number of FIFOs depends on the number of
images used by the HDR reconstruction module. A look-
up table (LUT) containing precomputed values is used to
combine multiple exposures. This LUT is inspired by the
work of Ali and Mann,29 and the estimation of radiances
is done with a comparametric camera response function
(CCRF). With this method, they are able to obtain a video
with a fixed latency and a controlled time calculation on

Table 1 Summary of the main embedded real-time architectures dedicated to HDR.

Method Hardware Capture Fusion HDR Frames used Tone mapping Resolution FPS

Akyüz et al.22 GPU No Yes 9 Yes — 65

Mann et al.23 FPGA Yes Yes 3 Yes 1280 × 720 120

Ureña et al.24 GPU/FPGA No No — Yes 640 × 480 30/60

Guthier et al.25 CPU + GPU Yes No — No 640 × 480 25

Chiu et al.26 ARM SOC No No 3 Yes 1024 × 768 60

Bachoo et al.27 CPU + GPU No Yes 3 — 1600 × 1200 20
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a Xilinx Spartan 6, model LX45 field-programmable gate
array (FPGA).

Ureña et al.24 published two tone mapping architectures,
described both on a GPU and an FPGA. The implementa-
tions were done on a portable battery operating circuit.
A new generation of tone mapping is presented in this
paper. The TMO includes both local and global calculations.
Typically, for the overall look, it highlights the areas contain-
ing low contrasts, but can also protect areas where the con-
trast is more well defined. Locally, it reduces the areas
that are too bright in order to improve the image details.
The overall improvement is based on the brightness histo-
gram adaptation of each channel in the HSV color space.
On the other hand, the local enhancement is based on the
retina-like technique. To summarize, the Gaussian filters,
the weighting and the human visual system consideration
are the main advantages of the operator. The FPGA imple-
mentation produced a video with a high frame rate, consum-
ing little electric power, while the GPU implementation
provides greater precision in the calculation of HDR pixels,
but uses a lot of resources.

In 2012, Guthier et al.30 introduced an algorithm with a
good HDR quality that can be implemented with the same
number of LDR captures. The choice of exposures is opti-
mally performed by selecting the better shutter speeds that
will add more useful information to contribute to the final
HDR image. The context can be real time by minimizing
the number of images. Basically, the exposure times are
wisely chosen so that at least one LDR image has a well-
exposed pixel at one position ði; jÞ. First, a good approxima-
tion of the radiance value E is calculated taking into account
the response function of the camera and a contributing func-
tion. A useful relationship is made between the radiance
histogram vector and the contribution of each image that
indicate potential changes in the scene. A stability criterion
is also introduced to the sequence which allows each frame to
be adjusted until a stable shutter sequence is found. Finally,
with this algorithm, capturing time is saved and the number

of LDR exposures are reduced without loss of quality at the
end of the computation.

Chiu et al.26 suggest a methodology to develop a tone
mapping processor optimized using an ARM system on
chip (SOC) platform. Their processor evaluates both the
photographic compression method by Reinhard et al.15 and
the gradient compression method by Werman et al.14 for
different applications. The new processor can compress
1024 × 768 HDR images at 60 fps. The core needs
8.1 mm2 of physical area with 0.13 m TSMC technology.

Bachoo27 developed a dedicated technical application of
exposure fusion (initiated by Van Reeth et al.31) to merge a
real time 1600 × 1200 video at 20 fps using three black and
white videos. They are able to control the speed of image
generation and to have a constant frame rate relative to
the defined processing block size. They perform an alterna-
tive Goshtasby32 algorithm. The implementation is done on a
CPU and GPU. The algorithm is divided into two parts so
that the power of the CPU processing and GPU are used
wisely. The CPU perform massively sequential operations
such as calculating entropy blocks. The GPU is used to
merge the blocks together, an operation that can be parallel-
ized to increase the execution speed of the fusing process.
The speed can be increased if the video resolution is reduced
or if the size of the processing blocks increases. A compro-
mise between calculation speed and quality can be chosen.
Nothing is said about the choice of exposure time and no
method is proposed to estimate exposures. It is recorded
that the use of additional exposures may produce a bottle-
neck in the fusing process.

3 Dedicated HDR Smart Camera
The dedicated hardware platform is a smart camera built
around a Xilinx ML605 board, equipped with a Xilinx
Virtex-6 (San Jose, CA) XC6VLX240T [see Fig. 1(a)].
The motherboard includes a 512 MB DDR3 SDRAM
memory used to buffer the multiple frames captured by
the sensor. Several industry-standard peripheral interfaces

Fig. 1 Overview of our high dynamic range (HDR) smart camera.
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are also provided to connect the system to the external world.
Among these interfaces, our vision system implements a
DVI controller to display the HDR video on an LCD mon-
itor. It also implements an Ethernet controller to store frames
on a host computer. A custom-made PCB extension board
has been designed and plugged into the FPGA board to sup-
port the Ev76c560 image sensor, a 1280 × 1024-pixel
CMOS sensor from e2v. It offers a 10-bit digital readout
speed at 60 fps in full resolution. It also embeds some
basic image processing functions such as image histograms
and evaluation of the number of low- and high-saturated pix-
els. Each frame can be delivered with the results of these
functions encoded in the video data stream header.

The parallel architecture presented in this paper operates
in several stages. At the first stage, an FPGA input interface
sequentially receives three pixel streams (produced by the
e2v sensor EV76C560), and stores them to a memory as
mosaiced color images. No demosaicing is performed at
this time. An MEC based on the histogram computation
also operates in parallel to select the proper exposure times.
It changes the sensor configuration each time an image is
captured. The second stage is based on a memory manage-
ment core which reads the previous frames stored into the
SDRAM and delivers them as synchronized parallel video
outputs. At the third stage, the different pixel streams are
combined into an HDR frame, for which the response
curve of the imaging system and the exposure times of the
images are known. This stage produces a complete radiance
map of the captured scene. Finally, the HDR frame is tone
mapped and can be displayed on a standard LCD monitor via
a DVI controller. This full process is continuously updated in
order to perform a real-time HDR live video at 60 fps with a
1280 × 1024 pixel resolution. Our real-time constraint is that
the availability of new HDR data from the LDR captures
must not exceed a fixed latency of 1 ms, guaranteeing that
the HDR process is imperceptible to the viewer.

Our camera must be automatically adapted to the illumi-
nation level, just as the human eyes are. The best set of expo-
sures has to be evaluated in order to capture the adequate

dynamic range of the scene. But when we perform HDR
stitching, traditional autoexposure algorithms fail. We
present a similar approach to a previous state-of-the-art algo-
rithm by Gelfand et al.,33 adapted to our real-time hardware
requirement. Our sensor is able to send us the complete
image histogram. Using the histogram of each image will
allow to us have a preview of the total range of brightness
that is being recorded. We require that fewer than 10% of
the pixels are saturated in white for the short exposure, and
require that fewer than 10% of pixels are saturated in dark
for the long exposure, as illustrated in Fig. 2.

However, the method developed by Gelfand for the evalu-
ation of the exposure times has been specifically designed for
HDR photography on smartphones. Their approach is opti-
mal to capture a single HDR image, but cannot be considered
for an HDR video. In our approach, we decide to continu-
ously update the set of exposure times from frame to frame to
minimize the number of saturated pixels by instantaneously
handling any change of the light conditions. The estimation
of the best exposure times is computed from the 64-level
histogram automatically provided by the sensor in the
data-stream header of each frame. Let us call ΔtL, ΔtM,
and ΔtH the three exposure times related to our scene.
Image histograms provided by the sensor are encoded with
64 categories with 16 bits by category. According to the
captured images with low exposure IL and high exposure
IH times, we apply these equations

QL ¼
Xh¼4

h¼1

qðhÞ
N

QH ¼
Xh¼64

h¼60

qðhÞ
N

; (1)

where QL and QH are the proportion of pixels on a specific
part of the histogram among N pixels that compose an
image. qh is the number of pixels in each bin h. The calcu-
lation is done with the first four and the last four categories in
the images IH or IL. The output pixels are encoded with
10 bits (between 0 and 1023) and four categories correspond
to a range of 64 pixel values. Then, we calculate one param-
eter for both extreme exposure times as

Fig. 2 From left to right, the first image shows 15.3% of pixels saturated at high level for the short expo-
sure before MEC, whereas the second image has only 5.4% of these pixels after MEC. In the same
manner, the third image shows 38.3% of pixels saturated in black before MEC and the fourth image
only includes 0.2% after MEC.
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δQL∕H ¼ jQL∕H −QL∕H;reqj; (2)

where QL∕H;req is the required pixel quantity for a specific
part of the histogram (10% among N). δQL∕H evaluates
the number of the current pixels with the desired quantity.
Once we have these parameters, the system completes a
series of decisions to the next image captures at tþ 1

ΔtL∕M∕H;tþ1←MECðΔtL∕H;tÞ; (3)

ΔtL;tþ1 ¼
�

ΔtL;t � 1x for δQL > thrLm
ΔtL;t � 10x for δQL > thrLp

; (4)

ΔtH;tþ1 ¼
�

ΔtH;t � 1x for δQH > thrHm
ΔtH;t � 10x for δQH > thrHp

; (5)

ΔtM;tþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔtL;tΔtH;t

p
; (6)

where ΔtL∕M∕H;I are the values of the exposure times of the
current images IL, IM, and IH.

To obtain a correct convergence time, the exposure time is
automatically adjusted using two different levels of thresh-
olds: one for a small variation of illumination and the other
one for a greater range of illumination changes. thrm (minus)
and thrp (plus) are the two threshold values that correspond
to two different levels of action for the adjustment of expo-
sure time. These thresholds will directly affect the transition
speed to a stable state. For example, when you have a sudden
increase in light in a short space of time, it affects the sensor
exposure time according to thrp. x determines how we
change exposures. Here, it corresponds to the sensor time
line, x ¼ 15.72 μs.

4 Implementation

4.1 Specific HDR Memory Management Core

The use of external off-chip memories is judicious for our
application that processes large amounts of data and high
data rates. For our case, video processing requires two frames
of data to be stored. In practice, this storage is implemented
using a DDR3 SDRAM chip which is a part of our hardware
development platform. It requires fast and efficient direct
memory access logic to achieve the HDR video in real time.

The sensor is able to send full-resolution images at 60 fps.
Initialization of our specific HDR memory management core
is shown in Fig. 3. I1 and I2 are first stored in DDR3
memory. The first frame (I1) is stored row by row with
the function WΛλI1, where λ indexes row number
(1 ≤ λ ≤ 1024). For example, WΛ1I1 means “writing of
the first row Λ1 of I1 into memory.” Each row write operation
is followed by an interrow delay, due to horizontal sensor
synchronization. For the second frame I2, the image is
also stored row by row (WΛλI2). This initialization step is
required before the generation of the first HDR frame. We
cannot avoid waiting for these two first exposures. After
this step, the memory management core can start (see Fig. 4).

During the capture of the last frame (I3), rows of the two
previous frames stored are synchronously read from the
memory during interframe (RΛλI1, RΛλI2) and buffered
into block RAMs (BRAMs) while each new captured row
(WΛλI3) is stored in memory. It is important to notice
that the design is a pure-hardware system which is proces-
sor-free and must be able to absorb a continuous pixel flow
of about 80 megapixels ðMPÞ∕s from the sensor (called
“Memory In” in Figs. 3 and 4) while reading two other pixel
flows corresponding to the two stored images (respectively
called “Memory Out 1” and “Memory Out 2” in Fig. 4).

The HDR content is computed with the methods
described in Secs. 4.2 and 4.3. The HDR process needs a
continuous stream of pixels for three images and then can
only be performed while receiving the third frame I3.
Then, the process can iterate throughout the capture of the
fourth frame (low exposure I4) and the readout of the second
and third frames (I5 and I6). Finally, our memory manage-
ment system is able to deliver two parallel pixel streams that
have been acquired and stored into the memory and a third
pixel stream directly from the sensor. With this technique,
each HDR pixel only requires three memory accesses
(one write and two read operations during one row interval),
saving many memory access operations. The main advan-
tages of such a technique are (1) to store only two images
in memory and (2) to avoid waiting for the three images
to compute an HDR image. A latency corresponding to
136 clock rising-edges (i.e., 1.2 μs for a 114 MHz system
clock) is required by the system to create the HDR tone
mapped data (gray part of HDR output in Fig. 4) from
the three captured lines. Then it delivers an HDR video

Fig. 3 Memory management core initialization. The sensor sends sequentially low (I1) and middle (I2)
exposure times. Writing operations into memory of each rows Λ indexed by λ of the first two frames.

Fig. 4 Memory management core. Performing three parallel streaming videos with low (I1), middle (I2),
and high (I3) exposure times. The delayed HDR row output is shown after HDR and tone mapping com-
putations (related to Secs. 4.2 and 4.3).
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stream at 60 fps which is directly updated at each time the
sensor sends an image.

4.2 HDR Creating

The evaluation of the response curve of the system g only
requires the evaluation of a finite number of values between
Zmin and Zmax (typically 1024 values for a 10-bit precision
sensor), as depicted in the paper of Debevec and Malik.6 This
evaluation is not required if the camera has a linear response.
However, for the major parts of image sensors, including the
sensor used in our hardware platform, the response is not
linear. The most significant nonlinearity in the response
curve is around the saturation points (i.e., very dark pixels
and very bright pixels), where any dark (respectively, bright)
pixel with a radiance below (respectively, above) a certain
level is mapped to the same minimum (respectively, maxi-
mum) image value. The evaluation of the response curve
has not been implemented on the hardware platform because
it needs to be computed only once for a given sensor.
Therefore, these values are preliminarily evaluated by a
dedicated PC software (MATLAB code provided with the
Debevec paper) from a sequence of representative images,
and then stored into an LUT (1024-word memory) on the
FPGA for further reuse to convert pixel values. For recover-
ing the HDR luminance value Eij of a particular pixel, all
the available exposures of this pixel are combined using
the following equation:

ln Eij ¼
Pp¼3

p¼1 ωðZp;ijÞ½gðZp;ijÞ − ln Δtp�Pp¼3
p¼1 ωðZp;ijÞ

; (7)

where p indexes the image number, i and j index the pixel
positions, Δt is the exposure time, and ωðzÞ is a weighting
function giving a higher weight to values closer to the middle
of the function

ωðzÞ ¼
�
z − Zmin for z ≤ 1

2
ðZmin þ ZmaxÞ

Zmax − z for z > 1
2
ðZmin þ ZmaxÞ

; (8)

where Zmin and Zmax values depend on the sensor output
dynamic (typically 1024 values for a 10-bit precision sensor).

Considering Z1;ij, Z2;ij, and Z3;ij as ZL;ij, ZM;ij, and ZH;ij,
the overall scheme is visible in a pipeline architecture in
Fig. 5. Computation of luminance values requires the use
of 32-bit arithmetic operators (subtractors, multipliers,
etc.) and a transition from 10-bit to IEEE754 32-bit wide
(called “Fixed-to-Float” in Fig. 5). LUTs are used to store
response curve g and make the transition from exposure
time values ΔtL∕M∕H to a neperian logarithm field. These
LUTs are used to avoid too much large hardware utilization.
Floating-point operators with a large data bus have been
chosen according to a detailed study of the arithmetic oper-
ators on the FPGA,34 focusing on the estimation surface and
time for floating and fixed operators. They note that the sur-
face increases exponentially with the accuracy (number of
bits of representation). In addition, output delays increase
linearly with precision. In view of these results, it was par-
ticularly interesting to consider implementations provided
by Xilinx, including floating-point operators. The choice of
using floating algorithms became spontaneous given the
huge dynamic computations necessary for radiances.
Moreover, as indicated in Table 2, the floating architecture
does not significantly consume more resources than the
fixed-point architecture.

4.3 Tone Mapping

Once the radiance map is recovered, image pixels have to be
mapped to the display range of a selected material. In our
case, the displayable range is 28 values. Reinhard et al.15

require one global computation: the log average luminance
found in the image, calculated as

Fig. 5 HDR creating and tone mapping hardware pipeline using three different pixel streams. Frame
enable is active when a new HDR frame is coming. It is important to note that we use IEEE754
32-bit floating-point arithmetic operators.
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Ēij ¼ exp

�
1

N

X
i;j

ln Eij

�
; (9)

where Eij is the scene radiance for pixel (i, j), and N is the
total number of pixels in the image. Then we want to map the
middle-gray scene luminance to the middle-gray of the dis-
playable image. For the photographic tone reproduction
operator, one approach is to scale the input data such that
the log average luminance is mapped to the estimated key
of the scene

Dij ¼ 255 ·
a Eij

Ēij

1þ a Eij

Ēij

¼ 255 ·
1

1þ Ēij

a·Eij

; (10)

where a is a scaling constant appropriate to the illumination
range of the image scene. We empirically chose 0.18 in
our case.

5 Results and Discussion

5.1 Hardware Implementation

Our work has been implemented on a Virtex-6 platform. We
show the hardware implementation results in Table 3.
Usually, FPGA-based image processing requires many spe-
cific devices such as SRAM memory, multiport memory,
video direct memory access, dedicated processors, and con-
sequently, consumes many DSP blocks. This is not the case
for our implementation. It requires a relatively low hardware
complexity since the number of occupied slices is 6692
(about 17% of the device) and the number of LUTs is
16,880 (i.e., 11% of the device). These results highlight sev-
eral interesting points. First of all, since the hardware utiliza-
tion is limited with the Virtex-6 platform, it gives us the
opportunity to implement the full HDR pipeline onto a
less powerful FPGA like a Xilinx Spartan-6 LX45, providing
a lower cost HDR smart camera. Second, our technique
can be extended to more complex processing architectures.
Among them, we can cite more complex TMOs and, specifi-
cally, local operators, known to give an enhanced visual

performance. Finally, we can also consider implementing
HDR pipelines using more than three LDR exposures in
order to capture more details in the scene.

Two series of captures of digital still images from the dif-
ferent video LDR streams are shown in Fig. 6. For the two
sets, you can see, from left to right, the contributions from
the different LDR frames (low, medium, and high exposures)
and the HDR image. As an example, for the first series, we
can distinguish the word “HDR” inside the lamp (high
brightness), and the word “HDR” inside the tube (low bright-
ness). A video of the scene with the lamp is also available on
Fig. 7. In the first frames, the video shows the different LDR
flows (low, medium, and high exposures from left to right)
that have been put together on the same shot. The video ends
with the resulting HDR video.

Our design has a horizontal blanking period of 307 pixels,
and a vertical blanking period of 20 rows. The entire design
contains hardware and algorithm latencies. The efficient
latency at the end of each row is 127 extra clock ticks
(1.11 μs for a clock pixel of 114 MHz). This constant latency
appears but does not alter the frame rate. Indeed, we use
the horizontal blanking periods delivered by our sensor to
compensate the latency. With a video frame rate of
60 fps, our system is able to process 60 × ð1280þ 307Þ×
ð1024þ 20Þ ¼ 99.40 MP∕s. The hardware system has a
maximum operating frequency of 126.733 MHz. Since
the video input and video output interfaces are running at
114 MHz, is it acceptable to have a lower system clock?
The answer is yes because, during active video, we will
support the back-pressure on the slower clock using the
BRAMs. During blanking periods, the BRAMs will empty
and the interface will catch up. Finally, our architecture
embeds all the algorithmic operators to produce a single
tone-mapped output pixel in real time.

5.2 Visual Quality

HDR image quality metrics require the availability of a refer-
ence image with which the images using the different TMOs
are to be compared. In this paper, the reference image is Paul
Debevec’s HDR photo of Stanford Memorial Church, used
historically in the seminal works on HDR.6 This reference
image has been built from the original LDR exposures
series of the church, and tone-mapped with the adaptive
logarithmic mapping of Drago et al.17 This technique is

Table 2 Resource comparison of fixed and floating point arithmetic
operators on Virtex-6.

Fixed point Floating point

Operator LUTs DSPs LUTs DSPs

Add/sub 75 0 477 0

0 1 287 2

Multiplication 696 0 659 0

132 1 107 3

Divider 1 cycle 1377 (Radix-2) 0 780 0

Divider 25 cycles — — 187 0

Root mean
square 1 cycle

1550 0 533 1

Root mean
square 25 cycles

— — 170 1

Table 3 Summary of hardware implementation results on the Virtex-
6 platform.

Metric Utilization/availability %

Estimated supply power 6.039 W

Maximum frequency 126.733 MHz

Number of occupied slices 6692 out of 37,680 17%

LUTs 16,880 out of 150,720 11%

Registers 20,192 out of 301,440 6%

Number of bonded IOBs 196 out of 600 32%

36 K BRAMs 17 4%
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described as the most natural method and also the most
detailed method for dark regions.35 A specific test software
implementing the different TMOs has been developed in
MATLAB and used to precisely evaluate the quality of
each tone mapper. Since our hardware implementation relies
on three exposures, we used the three LDR images of Fig. 8

in order to compare the different methods. The exposure time
for these three images are, respectively, 32 s, 1 s, and 31 ms
from left to right.

Image quality metrics can be divided into two main
categories. The first category is difference based metrics.
Among them, the most widely used quality metrics are
mean square error (MSE) and peak signal-to-noise ratio
(PSNR) because they are simple mathematical measures
evaluating the distortion between the image and the refer-
ence. However, they are not well matched to perceived visual
quality because they do not take the characteristics of the
human visual system into account.36 For the performance
evaluation of different TMOs, subjective criteria as the
human perception is of crucial importance. So, the second
category of quality metrics includes only human visual sys-
tem based metrics. Among them, Universal Quality Index
(UQI37) and Structural Similarity (SSIM36) are used for
measuring the perceptual similarity of the tone mapped
images. UQI is an image quality index that models the
image distortion as a combination of three factors: loss of
correlation, luminance distortion, and contrast distortion.
In UQI, local statistics are computed to estimate a similarity
between all corresponding 8 × 8 blocks across input and
reference images. The SSIM index is a generalized form of

Fig. 6 Results of the complete system. Our multiple exposure control can select the three proper expo-
sures, and the specific memory management core permits us to display the three bracketed images. The
HDR image is in the right of each image set.

Fig. 7 Output video (MPEG, 3 MB) [URL: http://dx.doi.org/10.1117/1
.OE.53.10.102110.1].

Fig. 8 The three low dynamic range images used for quality comparison.

Optical Engineering 102110-8 October 2014 • Vol. 53(10)

Lapray, Heyrman, and Ginhac: Hardware-based smart camera for recovering high dynamic range video. . .

http://dx.doi.org/10.1117/1.OE.53.10.102110.1
http://dx.doi.org/10.1117/1.OE.53.10.102110.1
http://dx.doi.org/10.1117/1.OE.53.10.102110.1
http://dx.doi.org/10.1117/1.OE.53.10.102110.1
http://dx.doi.org/10.1117/1.OE.53.10.102110.1
http://dx.doi.org/10.1117/1.OE.53.10.102110.1
http://dx.doi.org/10.1117/1.OE.53.10.102110.1
http://dx.doi.org/10.1117/1.OE.53.10.102110.1
http://dx.doi.org/10.1117/1.OE.53.10.102110.1


UQI for measuring the similarity between two images.
In the SSIM metric, the image structure is represented by
statistical measures (mean and variance), and image quality
is measured based on the similarity between the structure of
the reference and the test image. Therefore, a high-quality
test image has a structure that closely matches the structure
of the reference. SSIM is based on a specific measure of
spatial correlation between the structure of the images to
quantify the degradation of the image structure.38 This metric
imitates the human perception of image structure and returns
results that are more consistent with the human visual system
than those of MSE and PSNR.

Table 4 summarizes the comparison results in terms of
image quality of the tone mapped images produced by
our technique and by other methods using the above men-
tioned metrics: UQI, SSIM, MSE, normalized root mean
square error (NRMSE), and computation times. In terms
of visual quality, our method outclasses all the other methods
(Drago et al., Schlick et al., and Pattanaik et al.) with the
highest values both for UQI (0.89) and SSIM (0.8), while
having similar computation times. Moreover, our method
gives a better performance than the high-complexity local
method proposed by Reinhard et al. because we obtain
an identical performance in terms of UQI and SSIM, but
with 50% less processing time. In terms of MSE and
NRMSE, the performance evaluation gives opposite results,
with a lower performance compared to Drago et al., Schlick
et al., and Pattanaik et al., but higher than Reinhard
et al. Such results are in line with those obtained by
Ponomarenko et al.39 showing that the widely used metrics
such as MSE have very low correlation with human
perception.

The major and well known problem of the HDR tech-
nique by multiple exposures is the difficulty in removing
unwanted motion artifacts occurring during the reconstruc-
tion of the radiance map. Ghost detection and ghost removal
are under research to provide better HDR video quality. The
current system is limited by the bracketing spatiotemporal
dissimilarities that may occur during image capture. These
artifacts can be global or local. The global ghost occurs
when LDRs are misaligned during camera movement when
shooting with a hand-held camera, for example. The other
type of ghost comes from movement of an object in the
scene during acquisition. This anomaly may render HDR
imaging inoperative in some application areas. In our case,
we have not implemented motion correction, but due to the
high frame rate, the effect is only noticeable with highly
dynamic motions.

6 Conclusion
An HDR camera with a complete system from capture to
display has been designed for rendering HDR content at
full resolution and frame rate. We show that HDR video
with the original HDR technique at a high frame rate is fea-
sible. Some effort has to be made toward standardization,
compression, and sharing HDR data. The multiple exposure
technique can cause problems due to scene motion, but our
application is not affected by this to any significant amount,
as such extremely rapid scene motion does not happen in our
captured scenes. This is partly due to the fact that we used a
dedicated memory management core which delivers multiple
videos in parallel at 60 fps. For extremely rapid scene
motion, our HDR system may be prone to ghosting artifacts.
Therefore, we plan to study and implement onto the FPGA
dedicated ghost detection techniques in order to provide
a real-time ghost-free HDR live video.
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