
Journal of Systems Architecture 59 (2013) 833–846
Contents lists available at SciVerse ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/ locate /sysarc
Scene-based non-uniformity correction: From algorithm to
implementation on a smart camera
1383-7621/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.sysarc.2013.05.017

⇑ Corresponding author. Tel.: +33 380393886.
E-mail address: dginhac@le2i.cnrs.fr (D. Ginhac).
T. Toczek, F. Hamdi, B. Heyrman, J. Dubois, J. Miteran, D. Ginhac ⇑
LE2I UMR 6306, Univ Burgundy, Dijon, France
a r t i c l e i n f o

Article history:
Available online 6 June 2013

Keywords:
Fixed spatial noise
Non-uniformity correction
FPGA-based smart camera
Real-time implementation
a b s t r a c t

Raw output data from image sensors tends to exhibit a form of bias due to slight on-die variations
between photodetectors, as well as between amplifiers. The resulting bias, called fixed pattern noise
(FPN), is often corrected by subtracting its value, estimated through calibration, from the sensor’s raw
signal. This paper introduces an on-line scene-based technique for an improved fixed-pattern noise com-
pensation which does not rely on calibration, and hence is more robust to the dynamic changes in the FPN
which may occur slowly over time. This article first gives a quick summary of existing FPN correction
methods and explains how our approach relates to them. Three different pipeline architectures for real-
time implementation on a FPGA-based smart camera are then discussed. For each of them, FPGA imple-
mentations details, performance and hardware costs are provided. Experimental results on a set of seven
different scenes are also depicted showing that the proposed correction chain induces little additional
resource use while guarantying high quality images on a wide variety of scenes.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

CMOS image sensors are built around a grid of active pixels,
each pixel containing a photodetector and an associated amplifier.
The rest of the area on a CMOS sensor is comprised of readout cir-
cuitry, column amplifiers, analog to digital converters. Each ele-
ment of the image sensor should ideally be identical to any other
from the grid. Whenever an element differs slightly from the norm,
it is likely to produce an incorrect response signal. As a result, the
image sensors suffer from noise sources giving artifacts of the out-
put data. Since the design of the first CMOS sensor, numerous
works have been conducted to deeply characterize noise sources
[1–4] because they limit image sensor performance, especially un-
der low illumination and/or long exposure conditions [5]. The
noise sources can be divided into two distinct families Temporal
Noise and Fixed Pattern Noise [6]. Temporal noise is independent
across pixels and varies from frame to frame. Sources of temporal
noise include photodetector shot noise, pixel reset circuit noise,
readout noise for examples. On the other hand, image sensors also
suffer from Fixed Pattern Noise (FPN). FPN is the pixel-to-pixel out-
put variation under uniform illumination due to device and inter-
connect mismatches across the array [7]. It includes offset FPN and
gain FPN. First of all, offset FPN can be defined as a dark signal
non-uniformity, which is the offset from the average dark current
across the imaging array in the absence of light [8]. It is
independent of pixel signal and fixed from frame to frame for a gi-
ven sensor. Offset FPN can be pixel and column noise [6,9]. Pixel
FPN is due to variations in the photodetector and transistors geom-
etry whereas column FPN is mainly caused by mismatches in the
integrating amplifiers and the analog-to-digital converters com-
mon to all the photodetectors of a given column [10]. Since such
defects affect all the pixels of a column, column FPN appears as
stripes in the image leading to significant image quality degrada-
tion. Secondly, gain FPN is defined as the spatial variation in pixel
output values under uniform illumination due to pixel-to-pixel
mismatches [8]. Gain FPN is difficult to correct and for years, it
was one of the major CMOS imager’s disadvantages [11] because
it increases with illumination and exponentially increases with
temperature.

For achieving high-quality CMOS imagers, it is essential to de-
velop good FPN compensation based on accurate models of sen-
sors. While in the general case the FPN may be the result of any
alteration of the photodetector transfer function, it can be modeled
in a quite simple way. The pioneering model described in [6] is
based on a detailed characterization of the silicon structure of
the pixel. It focuses on offset noise and presents a detailed method
for estimating the pixel and column FPN components. The same re-
search team reports also a complementary study on gain FPN [12].
Most of the recent correction methods [10,13] consider the FPN to
be characterized at each photodetector by either a gain and an off-
set or just an offset because it is the dominant source of FPN in
most pixels [14]. Indeed, this offset (i.e. the photodetector dark
current) is the most easily seen manifestation of the FPN, consider-

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2013.05.017&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2013.05.017
mailto:dginhac@le2i.cnrs.fr
http://dx.doi.org/10.1016/j.sysarc.2013.05.017
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc

834 T. Toczek et al. / Journal of Systems Architecture 59 (2013) 833–846
ably affecting the sensor output under low luminosity and/or long
exposure conditions. Gain variations, or more complex nonlinear
behaviors of the photodetector, are seldom seen in practice. Lots
of works have been done to integrate electronic circuitry in the
sensors to significantly reduce offset FPN. The most commonly
used technique is Correlated Double Sampling (CDS) that can be
found in many analogue circuits. The pixel signal is sampled twice,
once immediately after reset and the second time after integrating
the signal. These two values are then read differentially so that off-
set FPN is eliminated [15]. Various other techniques have been pro-
posed to reduce FPN by either employing pinned photodiodes
[16,17] or modifying the pixel circuit itself [18,19], or optimizing
the column readout circuit [20], or subtracting the response of each
pixel from its response to a uniform input current generated either
optically [21] or electronically [22,23]. However, despite the inte-
gration of numerous FPN-reduction circuits, CMOS image sensors
still have FPN noise problems because of mismatched pixels and
associating readout circuits, especially in extreme light conditions.
As a result of the complex nature of sensor non-uniformities, FPN
correction, also called non-uniformity correction (NUC), by means
of efficient post-processing algorithms is a necessary and unavoid-
able task to be performed in order to achieve higher-quality
images, or image sequences.

So, in this paper, we will concentrate on FPN reduction algo-
rithms and hardware implementation of these algorithms on
FPGA-based smart camera architectures. Since FPN varies slowly
over time, depending mainly on the operating conditions (e.g. tem-
perature) of the image sensor, this poses additional challenges to
achieve a high quality image. Based on a state-of-the-art study of
existing FPN correction methods, we present a new algorithm
and different real-time hardware implementations for improved
FPN compensation. This algorithm does not require any sensor cal-
ibration phase and is more robust to any dynamic changes in the
FPN which may occur slowly over time. Our algorithm is naturally
candidate for a real-time implementation on any FPGA-based
smart camera architecture such those described in [24–27].

The rest of the paper is organized as follows. Section 2 gives a
quick summary of existing FPN correction methods, and explains
how our approach relates to them. Section 3 deals with our im-
proved algorithm based on the approach developed by Harris and
Chiang [28]. Three different hardware implementations on a FPGA-
based platform are then discussed in Section 4. Finally, implemen-
tation details, performance, and hardware costs are described in
the last section of this paper. Experimental results on a set of seven
different scenes are also depicted. Comparisons in terms of image
quality between our implementations and original Harris and
Chiang’s algorithm are also provided.
2. FPN correction algorithms

In order to significantly decrease the FPN, non-uniformity cor-
rection must be applied to images acquired by the sensor. Depend-
ing on the accuracy requirements of the candidate applications,
several post-processing methods can be applied to correct non-
uniformities. These techniques include basic methods such as cal-
ibration-based methods and more complex techniques such as
scene-based methods [29].
2.1. Calibration-based methods

As already said, FPN is mainly due to inhomogeneity in the
manufacturing of the sensor. It is also known that the resulting
non-uniformity does not widely change during the service life of
the sensor. So, the most common way to deal with FPN is through
a calibration step at the factory in order to precisely evaluate a ref-
erence-based correction. The most basic technique is to measure
the sensor output when no light reaches the photodetectors to ob-
tain a good approximation of it [30]. Then, the resulting ‘‘dark
frame’’ can be stored in a ROM and subtracted at each frame from
the actual sensor output. While this method is easy and inexpen-
sive, this one-time calibration has the drawback to ignore FPN vari-
ations induced by the sensor operating conditions. It is also known
that FPN is not totally stationary but instead drifts slowly in time,
making a one-time calibration ineffective. Of course, calibration
can be done frequently to take into account the FPN variations
but this unfortunately requires halting normal imaging operation
during each calibration process. One way to compensate efficiently
the FPN drift is to perform more than one calibration (generally
two), each of them at a different temperature. Such a technique
is mainly used for infrared focal-plane sensors [31] but have been
also applied to more conventional image sensors [32]. The cor-
rected image is then the one whose calibration temperature is
the closest to the operating temperature, or possibly an interpola-
tion of images whose calibration temperatures are around the
operating temperature. In either case, at least twice as much
ROM is required to store the calibration images, and a means to
estimate the sensor operating temperature is required.

A more cost-effective solution in terms of memory is described
in [33]. This better strategy for FPN estimation consists in analyz-
ing supplementary data provided by the sensor. At the top of the
sensor, a series of black and dark extra lines being shielded from
light is positioned. Specifically, black lines have zero integration
time whereas dark lines are shielded from incident light while hav-
ing the same exposure as the image. Consequently, the data from
these lines can be used to estimate a column FPN signature for
the whole image. This signature is continuously averaged and up-
dated according to the operating conditions by using the dynamic
information provided by the black and dark lines and subtracted
from the image data. This method only provides FPN estimation
per column and is not able to compensate the variation between
pixels. Additionally, despite interesting results described in [34],
such a method is unfortunately not available for designers or
end-users of smart cameras because it requires both the VLSI de-
sign of extra-lines of pixels in the core of the sensor and the possi-
bility to access and read data from these extra-lines.

2.2. Dynamic FPN estimation by scene-based methods

This kind of techniques is called ‘‘scene-based’’ non-uniformity
correction methods because they do not require specific scenes or
initial conditions for the purpose of calibration. FPN is dynamically
estimated and updated from the real-time analysis of the scenes
captured by the sensor. Therefore, scene-based techniques are able
to permanently evaluate FPN by exploiting motion-related features
in image sequences. They bring the advantage to fit the drifting
operating conditions without the need for any physical measure-
ment, by adaptively using the information provided by the sensor.
They can traditionally yield better results than calibration-based
techniques, especially when the operating conditions of the sensor
cannot be correctly approximated by a simple combination of the
calibration measurements. It is obvious that such techniques in-
crease system reliability but have higher computational complex-
ity [35] requiring significant hardware resources to be processed
at the sensor frame rate.

Scene-based non-uniformity correction (NUC) methods include
two distinct categories of post-processing: (1) algebraic tech-
niques, and (2) statistical techniques. As defined in [36], the alge-
braic techniques make use of global motion between the frames
in the video sequence and attempt to compensate for the non-uni-
formity by means of algebraic methods without making statistical
assumptions about the FPN [37–39]. Such approaches aim at ana-

T. Toczek et al. / Journal of Systems Architecture 59 (2013) 833–846 835
lyzing the values of nearby pixels in order to separate the scene
from the noise. Ratliff et al., in particular, have proposed an alge-
braical method [40] based on motion vector estimation. Such
methods offer good robustness but are computationally heavy
and not really suitable for real-time on-line correction.

On the other hand, statistical techniques model the FPN as a
random spatial noise and estimate the statistics of the noise to re-
move it [41–44]. Compared with registration-based methods, sta-
tistical approaches have been more widely studied because of
their relatively lower computational complexity, smaller storage
demands, and better realtime performance [44]. However, they
rely on hypotheses regarding the sensor output signal (and there-
fore the scene) in order to separate the FPN from the actual signal.
It is important for those hypotheses to be reasonable enough to be
satisfied by most of the scenes acquired by the sensor. Neverthe-
less, when these assumptions are violated, performance can be-
come poor and ghosting artifacts are easily produced. As an
example, the most well-known statistical method developed by
Harris and Chiang [28] supposes the average value and standard
deviation of the photodetector output is the same among all the
photodetectors of the sensor.
3. Improved constant statistics method

We propose to extend the approach developed by Harris and
Chiang [28] relying on the global constant statistic assumption
which states that the statistics of the observed scene become con-
stant over time. Our objective is to improve the method making it
more flexible regarding the input scene, and then more efficient in
any unknown visual scene. The original paper models the non-lin-
ear behavior of each photodetector as an affine function. Each pho-
todetector k is associated with a pair of scalars ak and bk such that
the actual luminance ~Ik received by the photodetector can be ob-
tained from the measured one Ik through the relation:

Ik ¼ ak
~Ik þ bk ð1Þ

Harris and Chiang assume that the measured luminance over
time has the same mean and the same variance among all the pho-
todetectors of the sensor. Under these conditions, it can be shown
that for each photodetector k, assuming mk is its average measured
luminance and rk the measured luminance variance, the following
holds:

~ik ¼
Ik �mk

rk
and ~Ik ¼ A~ik þ B ð2Þ

There are several easy ways to iteratively estimate mk and rk —
for instance, an exponential window can be used — so ~ik can be
actually and cheaply computed. The ~ik signal mean is zero and its
variance is unitary, but it is otherwise proportional to the actual
luminance value plus an offset. ~Ik can be obtained by knowing
the factors A and B, which are the values of the gain and the offset
respectively, estimated by using the least squares method so as to
minimize the error between the measured and corrected pixel val-
ues. Also, whenever the exact values of A and B do not matter, sim-
ply normalizing ð~ikÞ over the dynamic range is enough (this is for
example the case in IR imaging). This method has the advantage
of being very simple, but is has several drawbacks in practice.
The main problem is that the hypotheses regarding the mean
and variance of the input signal are not satisfied in a lot of cases.
Harris and Chiang recommend to move the camera or otherwise
move the objects of the scene during calibration, but this implies
the approach cannot be used to continuously calibrate the sensor.
Whats more, even when the camera is moving and a dynamic
scene is being shot, the mean and variance hypotheses may not
hold. For instance, as the authors of the original paper admit, most
of the time the output image is brighter at the top than at the
bottom due to the fact that most light sources, both natural and
artificial, illuminate the scene from above. We have observed that
making accurate hypotheses regarding the FPN is much easier than
regarding the scene. So, we propose to adapt this approach so as to
make it work whenever the following is true for each photodetec-
tor k:

1. FPN has only an offset component (no gain component);
2. the mean value of the FPN offset is locally zero;
3. the high spatial frequency signal component at the correspond-

ing pixel has an average value of zero over time.

Concerning the validity of the first hypothesis, we can notice
that FPN is almost only seen on low luminosity and/or long expo-
sure shots. If a significant gain component exists, its influence
should be noticeable regardless of luminosity or exposure. Since
it is not the case for almost any visible light sensor we studied, it
means that either no FPN gain component exist at the photodetec-
tor level, or that current compensation mechanisms for this com-
ponent work just fine [10,45], unlike those aiming to correct the
offset component. The second hypothesis is more or less justified
by assuming that manufacturing defects occur randomly. It can
be partially confirmed by observing the output of the OmniVision
OV9715 sensor embedded in the smart camera platform used in
this study. Image capturing was performed while preventing any
light from reaching the photodetectors as shown on Fig. 1(a). A
zoom on a 64� 64-pixel sub-window illustrates the random distri-
bution of noise. The absolute magnitude of its Discrete Fourier
Transform is depicted on Fig. 1(b) and reveals that the column
FPN contribution appears clearly as an horizontal line at y ¼ 0. It
can be seen that the high frequencies indeed dominate the image,
but some low frequencies remain, however, and it appears that col-
umn FPN is the main source of them. The last constraint is the only
one concerning the scene. Since the FPN is mostly a high frequency
component, it is enough to average over time the high spatial fre-
quencies at each pixel to determine the noise value, should this
constraint be satisfied. In practice, it is often naturally satisfied,
for instance whenever the camera is panning, or whenever an ob-
ject traverses the field of view. While it is still possible to find path-
ological cases (for instance, a motionless camera shooting a
completely static scene) it is much weaker and more naturally
occurring than the constant mean/constant variance hypothesis
used previously.

The general principle of our method is to remove the low spatial
frequencies from the current frame, to apply the Harris and Chiang
method on the remaining high spatial frequencies, and to add back
low frequencies to obtain the final image. When applying the Har-
ris and Chiang method, we will assume that ak ¼ 1 for each k. Ben-
efits of our method are various: (1) range of scenes correctly
corrected is much wider and, (2) the post-processing dynamic
range adjustment step is no longer necessary. Indeed, for each pho-
todetector k, let us separate the high frequency component IH

k from
low frequency one IL

k. Using the previous notations, we will have:

IH
k þ IL

k ¼ ~Ik þ bk ð3Þ

Assuming ak ¼ 1 (constraint 1), using the same reasoning as in
the original article but on IH

k instead of Ik, we get:

~iH
k ¼ IH

k �mH
k ð4Þ

where mH
k is the average over time of the high spatial frequency

component of the values of the photodetector k. The IL
k component

can be considered as noise free according to the constraint 2. Final-
ly, let us notice that while ð~iH

k Þ is zero-meaned temporally just as in
the original method, so is ð~IH

k Þ, the high frequency component of the

Fig. 1. Dark current FPN of an OmniVision OV9715 sensor and corresponding DFT.

836 T. Toczek et al. / Journal of Systems Architecture 59 (2013) 833–846
actual luminance the detector would measure were it perfect. This
is a consequence of the constraint 3. So, we get:

~Ik ¼ ~iH
k þ IL

k ð5Þ

This can be computed as we go, confirming that no further post-
processing is needed. Low-pass filtering aside, we will just need to
update the ðmH

k Þ estimate at each frame. The cheapest method to
do this is to use an exponential window [46]. We will therefore
take a scalar a, such as, if m̂H

k ðnÞ is the mH
k estimate at the n-th

frame:

m̂H
k ðnÞ ¼ aIH

k þ ð1� aÞm̂H
k ðn� 1Þ ð6Þ

Alternative methods include using a sliding rectangular win-
dow, which requires to store the history of the last IH

k values, or
accounting for all the samples, which would require a division.
Those methods do not yield significantly better results than the
exponential window based one.

4. Generic architecture for hardware implementation in a FPGA-
based smart camera

Any implementation requires to perform two main tasks: first,
extracting the low frequencies of the current frame through filter-
ing, and then correcting the individual pixel values. The first part is
a well understood problem, and the second is embarrassingly par-
allel. What is more, both parts rely more on arithmetical perfor-
mance than on bit mangling or fine grained flow control. Finally,
for low values of a, using floating point arithmetics may seem to
be a good idea. As a result, processor-based machines with SIMD
capabilities (such as PC equipped with programmable GPUs) are
quite good candidates for real-time implementations but are not
easily embeddable on a smart camera. The choice of an FPGA as
the implementation target should be privileged whenever the con-
sumption is a significant problem, the FPN correction logic is to be
shipped with the sensor, and/or the latency of the sensor data in-
duced by the correction must be kept minimal.

4.1. Correction pipeline architecture

According to the principles exposed so far, the correction chain
can be implemented by a simple pipeline consisting of a low-pass
filter followed by a correction block working at the pixel level. The
corresponding architecture is shown on Fig. 2. The high-frequency
data is obtained by simply subtracting the low frequencies from
the raw signal. Those low frequencies are later added back to the
corrected high-frequency data. The low-pass filter and the correc-
tion block have an average throughput of one datum per cycle. The
correction block has a constant latency of several cycles. Conse-
quently, using an appropriate delay is required to synchronize
the low frequency component with the high frequency one before
adding them back together. Depending on its exact implementa-
tion and parameters, the low-pass filter has a latency ranging from
a few cycles to a few thousands cycles (see Section 4.3 for details).
In any case, its latency is much shorter than a frame duration. Since
the pixel correction block needs to store the temporal average va-
lue estimate mH

k for each pixel k, it needs an access to the external
memory if the input resolution is too high. Assuming a resolution
of 1280 � 720 and using 16 bits per estimator, 1.84 MB of memory
are required, i.e. more than most FPGAs can provide internally. It is
possible to prefetch the estimator values and store them back once
updated in a transparent fashion, using a small on-chip scratch
pad, without affecting the overall correction block latency or
throughput.

While this first version gives satisfying results, it is interesting
to add a block to specifically tackle column FPN correction. The col-
umn-level correction is performed similarly as the pixel-level cor-
rection. In the remainder of this paper, we will call a0 the
equivalent of the a coefficient for column average estimator com-
putation. While the pixel average estimators is updated once a
frame, the column estimator m0Hj is successively subtracted from
every pixel of a given column j, and therefore successively updated
by taking into account the values of each pixel of that column. Con-
sequently, column average estimators converge more quickly since
they are updated more frequently than pixel average estimators.
Convergence time issues are discussed in the Harris and Chiang’s
original article but also in [46] in the particular case of exponential
windows. Moreover, column estimators are more robust than their
pixel counterparts, and column correction is less likely to produce
artifacts whenever any of our three working conditions is not met.
In particular, they tend to give acceptable results even for highly
static scenes.

Fig. 3 shows the most natural way to integrate column-level
correction the previous pipeline architecture. One should note that
no SDRAM access is required this time. Indeed, for a resolution of
1280 � 720 and using 20 bits per estimator (see Section 5.1 for
justification), all of the ðm0Hj Þ take about 3.2 KB. In Section 3, we
have seen that the column noise is actually the noise component
with the most low frequencies (cf. Fig. 1(b)), and therefore the
one most likely not to satisfy our second working constraint. Given
this, we propose another variant (shown on Fig. 4) of the previous
architecture. In this variant, the column correction occurs before
the low-pass filter, directly on the sensor data (and not on their
high frequency component). Since the output of the column correc-

Fig. 2. Correction pipeline, variant A (pixel level correction only).

Fig. 3. Correction pipeline, variant B (column and pixel level correction).

Fig. 4. Correction pipeline, variant C (column level correction before filtering, standard pixel level correction).

T. Toczek et al. / Journal of Systems Architecture 59 (2013) 833–846 837
tion has a mean value of zero, it helps to satisfy the second working
constraint, requiring a zero FPN offset. Moreover, such an approach
makes also the pipeline C globally more robust regarding conver-
gence problems because it helps the subsequent pixel-level correc-
tor to quickly and efficiently reduce noise. This is akin to using the
original approach from Harris and Chiang on whole columns in-
stead of pixels, before using our improvements for noise correction
at the pixel level. However, since the output of the column correc-
tor is by principle zero-meaned over time, the only way to obtain
the correct output intensity is to compute the global spatial aver-
age pixel value of the frame before the column correction step,
and to add it back behind the column correction block (for in-
stance, directly after it). In order to compute this average, the val-
ues of all the pixels of the frame must be known. This implies a
latency greater than a whole frame duration. This aspect can be
heuristically mitigated by using the global average of the previous
frame instead of the current one in the computations. So, there is
no extra latency induced, but the corrected output will appear less
precise whenever the scene luminosity varies too quickly between
two successive frames.
4.2. Correction block

So far, we have not discussed the way the video data bus is or-
ganized. For the rest of this paper, we will assume it is composed of
the video data itself (typically an 8-to-10 bit signal), and three one
bit control signals: the active video signal indicating the video data
is valid, and horizontal and vertical synchronization signals mark-
ing the beginning of a scanline or of a frame, respectively.

The overall principle of the column correction block itself is
shown on Fig. 5. The main issue when implementing the correction
blocks is the storage of the temporal averages for each pixel or each
column. For column correction, when aiming for a throughput of
one datum per cycle, it must be possible to read a coefficient and
write another one during the same cycle. To avoid the use of two
port on-chip RAM, we can rely on two banks: one for even-num-
bered columns and one for odd-numbered columns. Assuming that
the correction block is fed a valid pixel value every cycle, the col-
umn whose m0Hj are read and written will have its index j alternat-
ing between even and odd. Since there is a FIFO before the writing
port of the temporal average memory interface, it is possible to

Fig. 5. Column correction block principle schematic.

838 T. Toczek et al. / Journal of Systems Architecture 59 (2013) 833–846
perform those read and write operations simultaneously by alter-
nating between the two banks, no matter whether the number of
stages of the correction block pipeline is even or odd (Fig. 5 shows
a four stage pipeline, but it can be adapted easily without loss of
generality). The FIFO will contain exactly one or zero element. This
works as well when there are bubbles in the pipeline. The policy is
simply not to write (by leaving the value to be written in the FIFO
until the next cycle) whenever a bank conflict arises. For column
correction, a FIFO size of exactly one element is enough to avoid
overruns.

The pixel correction block (Fig. 6) obeys essentially to the same
principles, but in this case, the memory interface serves as a cache
controller. Since the ðmH

k Þ are read and written in ascending order
and that none of them is ever skipped, it is easy to prefetch them
from the SDRAM, as well as store them back, in a timely manner,
as long as one knows the worst case SDRAM access latency. How-
ever, to keep the throughput at one value per cycle without using
double port on-chip memories, one will have to use four or more
memory banks instead of two. The banks are associated by pairs
of even and odd-numbered pixels (just like for columns), and at
least two such bank pairs have to be used: one for the read and
write operations from the correction logic, and another for storing
back previously written values in the SDRAM as well as prefetching
the ones to be read next. As previously, the FIFO located just before
the writing port of the memory interface should have a size of at
least one element for everything to work. It can nevertheless be
larger, for instance when the correction block is used within a sys-
tem-on-chip which contains other IPs using the SDRAM, or sharing
the bus which leads to the SDRAM controller. In such systems, it
may be difficult to estimate the worst-case SDRAM access latency.
In such cases, it is possible to assume reasonable access times to
external memory, and rely on the FIFO as a temporary store when-
ever the assumed deadline is not met.
4.3. Low-pass filtering

The low and high frequency components of frame data are ob-
tained through low-pass filtering. The high frequencies are simply
the difference between the original image and the low-pass filter
output. There are several ways to filter an image so as to cut its
high frequencies. Since we want to do noise correction on the
high frequencies, we ideally have to cut all the noise frequencies
while cutting as little other frequencies as possible. Since the raw
signal with low frequencies is not processed and just added back
to the corrected data, it can be tempting to chose a very small cut
-off frequency in order to minimize the uncorrected noise in low
frequencies. This can even lead to chose a filter that cuts every-
thing but the fundamental. In such a case, the result will be sim-
ilar to the simplified (no noise gain correction) implementation of
the Harris and Chiang method. Despite some severe limitations
(in particular in presence of high amplitude low frequency com-
ponents; see for instance [40]), it is supposed to remove the
FPN as expected.

So, since it is difficult to predict ahead of time the amount of
FPN a sensor will generate, the prudent course of action is to use
a large filtering window. The exact kernel used matters little, as
long as the filter is a low-pass. It should therefore be selected for
its implementation simplicity.

An obvious solution is to use a rectangle window with a width
and height that are powers of two, and obtain the result by sum-
ming all the pixel values of the window before right shifting them
so as to obtain the spatial average. This has the advantage to be
implementable without any multiplier or divider. Let N and M be
integers such as the window size is 2N lines by 2M columns, and
let w and h be powers of two greater or equal to the frame width
and height, respectively. The most complicated part is the on-chip
RAM organization. We will need three memories:

Fig. 6. Pixel correction block principle schematic.

T. Toczek et al. / Journal of Systems Architecture 59 (2013) 833–846 839
� The input memory I, storing as is the N last pixel lines, such that
the pixel of coordinates ði; jÞ is at the address jþ ði mod 2NÞ:w;
size: w� N elements.
� The column memory C, storing for each column the average of

the values of the corresponding pixels of the input memory;
i.e. the value at the address j is 1

2N

P2N�1

i¼0 Iðjþ iwÞ; size: w
elements.
� The result memory R, storing the final filtering result, that is

1
2M

P2M�1

j¼0 CðjÞ for a given pixel ði; jÞ; however, the result is the
average of the values of the pixels in the area
ð½ði� 2N þ 1Þ::i�; ½ðj� 2M þ 1Þ::j�Þ, which is not centered on ði; jÞ;
the addressing scheme is identical to that of the I memory; size:
w� N elements

For any pixel of coordinates ði; jÞ and of value p, the memories
can be updated from their previous values using very few arith-
metical operations:

� Iðjþ iwÞ p
� CðjÞ c where c ¼ CðjÞ þ p�IðjþiwÞ

2N

� Rðjþ iwÞ Rððj� 1Þ þ iwÞ þ c�Cðj�MÞ
2M

To avoid adding another port to the result memory due to the
read of Rððj� 1Þ þ iwÞ in the last expression (and to avoid the
j� 1 subtraction), a register holding the last result computed
may be used. It can be seen that the arithmetical complexity of
those computations is of two additions and three subtractions
(the j�M subtraction must not be forgotten in the count). Four
more registers are required to store the coordinates ði; jÞ of the last
pixel read from the sensor, and the coordinates ði0; j0Þ of the last pix-
el output. A pixel is output whenever i0 6 i� 2N�1 and j0 < j� 2M�1.
Assuming lI ¼ j0 þ ði0 mod 2NÞ and lR ¼ j0 þ 2M�1 þ ðði0þ
2N�1Þ mod 2NÞ:w, the output values are RðlRÞ for the low frequency
component, and IðlIÞ � RðlRÞ for the high frequency component.
This is because RðlRÞ is the average of the pixels of a zone approx-
imately centered at the pixel of value IðlIÞ. Incrementing i and j re-
quires one adder, and i0 and j0 another one, while computing lR

requires two additions. Finally, subtracting IðlIÞ from RðlRÞ requires
a subtraction. So, there are 10 adder/subtractors and two compar-
isons required, no matter the values chosen for N and M. It is quite
clear most of the resources used will reside in the registers and the
on-chip memory instead of arithmetic operators. The number of
registers depends on the number of pipeline stages. Since the sys-
tem frequency depends on the pipeline depth, the number of pipe-
line stages must be carefully chosen in order to be able to process
the pixel stream captured at the pixel clock. It is also worth evalu-
ating the number of ports required for each memory. It is possible
to minimize them by using once again some ingenious bank
organization:

� I requires three ports: for each valid pixel ði; jÞ, Iðjþ iwÞmust be
read and written back, and IðlIÞmust be read. Since reading and
writing Iðjþ iwÞ can’t be done anyway on the same pipeline
stage on most FPGAs (it is generally not possible to read and
write at the same address with predictable results), the same
trick as in the correction blocks can be used: two banks of on-
chip ram with selection based on the parity of j, and a 1-element
FIFO just before the writing port gives good results. Each bank
must be double port, though.

840 T. Toczek et al. / Journal of Systems Architecture 59 (2013) 833–846
� C needs three ports but can be implemented with four banks of
single port memory; the read addresses are j and j�M, and the
written address is j. Let us use the j parity trick for the read and
write at the address j, and use another pair of banks when the
Mth bit, counting from the least significant to the most signifi-
cant, changes. For instance, if M ¼ 2 (i.e. when the window
width is 4), the banks used for consecutive j would be 1, 2, 1,
2, 3, 4, 3, 4, 1, 2, 1, 2, etc. This works if the reads at j and at
j�M are located at the same pipeline stage.
� R needs two ports (if a register is used to store the last written

value). By adding the extra constraint that an output is written
only if j0 and j have different parties, two banks of single port
memory suffice.

Everything said so far does not take into account image borders.
It is possible to handle them while still keeping a throughput of
one value per cycle, but at the cost of extra combinatorial complex-
ity. Alternatively, it is possible to ‘‘cut’’ the borders by removing
the N first and last lines and the M first and last columns in order
to keep the hardware simple. It is often desirable to take M such as
M > N. This way, column noise is filtered more efficiently. An inter-
esting alternative version of the low-pass filter can handle the ex-
treme case where M is the image width and N is one. While this
does not give the best results (see Section 5.1), it has the advantage
Fig. 7. 1010th frame of our test scene (sam
of using very few hardware resources, in particular no on chip
memory at all, and being fit to eliminate the column component
of the FPN very efficiently. Also, by taking the approximation that
the average value of the previous image line is almost equal to the
one of the current, it is possible to implement such a filter with a
latency of just a few cycles (depending on the number of pipeline
stages), instead of the latency equivalent to the duration of 2N�1

lines for the previous implementation (which is quite low, espe-
cially when N < M, but still much more than a few cycles). This
new version is pretty straightforward, with just one register sum-
ming all the pixel values of the line. At every horizontal synchroni-
zation, this value is divided by the number of pixels of the line
(through fixed point multiplication), and stored in a separate reg-
ister. The value of this new register is used as the low frequency
output, and subtracted from the original pixel value in order to ob-
tain the high frequency output.

5. Results

5.1. Correction quality

We have tested the proposed method by using video sequences
tainted with artificial noise. This way, an image comparison metric
can be used to estimate how much the corrected version differs
e correction parameters as in Table 4).

Table 2
Correction quality depending on the estimator data-type and precision (Pipeline B,
16� 16 low-pass filter window, a ¼ 2�8, a0 ¼ 2�12).

Estimator datatype and size (pixel/column) Correction quality

Fixed point, 12-bit/16-bit 0.527
Fixed point, 14-bit/18-bit 0.832
Fixed point, 16-bit/20-bit 0.849

T. Toczek et al. / Journal of Systems Architecture 59 (2013) 833–846 841
from the original sequence. We have chosen to use the UQI [47] as
such a metric. It roughly corresponds to the human perception of
distance between images. The value of the UQI between two
images is in the [�1, 1] range, and is 1 for identical images, 0 for
uncorrelated images, and �1 for completely anticorrelated images.
As recommended in [47], we used a sliding window of size 8 � 8
pixels for UQI computation. Generally, a high UQI corresponds to
a low MSE and therefore a high PSNR, but it tends to offer a higher
degree of correlation with human assessment of similarity be-
tween images than those two metrics, and this is why it has been
preferred to them in this article.

The artificial offset noise used is simply a uniform pixel noise
within �12:5% of the dynamic range, plus an uniform column
noise in this range as well. The video sequence used in the tests
that follow consists of a 320 � 240 recording with 1110 frames.
The scene is a room with no mobile objects in it, but the panning
of the camera across the room provides enough information for
noise elimination (see Fig. 7). In order to work correctly, statistics
based methods need some time for the estimator values to con-
verge. Therefore, in the rest of this section, the evaluations of effi-
ciency will be given by computing the average UQI on the 100 last
frames only. For reference, the average UQI of the 100 last frames is
0.081 when no correction is performed (the comparison is done be-
tween the original frames and their artificially noisy versions);
evaluating the mean square error on all the pixels of those 100 last
frames yields a PSNR of 20.28 dB. In the rest of this section, we will
refer to the average UQI between a corrected version and the origi-
nal sequence on the 100 last frames as the correction quality.

We have assumed that there is no loss of precision in the fixed
point arithmetic operations of the correction and low-pass blocks.
This may or may not be true depending on the actual implementa-
tion. Of course, some precision is lost when storing the estimators
in memory. Let us assume the analog-to-digital converters of the
sensor produce an unsigned fixed point value between 0 and al-
most 1, the point being located just before the most significant
bit. Similarly, each average estimator is a signed fixed point num-
ber in the range ½�1;1�, and the coefficients a and a0 are unsigned
fixed point numbers in ½0;1�. Taking a ¼ 2�n for some natural n al-
lows to trade the two multipliers of the pixel-level correction block
for a subtractor. The same can be achieved for the column-level
correction block by taking a0 ¼ 2�n0 . We will therefore assume a
and a0 to have this form.

Table 1 gives correction qualities depending on the values of a
and a0. The estimators were stored as double precision floating
point numbers for this measurement, so it is safe to assume that
their precision was not an issue. The correction was performed
using a software version of the pipeline B (Fig. 3), with a 16� 16
low-pass filter. One might have thought that the value of a0 should
be approximately equal to a

frameheight (so as the column and pixel
Table 1
Correction quality depending on the pixel and column correctors exponential window
coefficients (Pipeline B, 16� 16 low-pass filter window, floating point estimators).

a0 a

2�4 2�5 2�6 2�7 2�8 2�9 2�10

2�4 0.739 0.779 0.792 0.799 0.801 0.702 0.395
2�5 0.746 0.787 0.801 0.807 0.810 0.710 0.400
2�6 0.751 0.791 0.806 0.813 0.815 0.715 0.402
2�7 0.757 0.798 0.813 0.819 0.822 0.721 0.404
2�8 0.766 0.808 0.822 0.829 0.832 0.730 0.410
2�9 0.774 0.816 0.831 0.838 0.841 0.738 0.414
2�10 0.779 0.821 0.836 0.843 0.846 0.742 0.418
2�11 0.781 0.823 0.838 0.845 0.848 0.745 0.419
2�12 0.782 0.824 0.839 0.846 0.849 0.745 0.420
2�13 0.783 0.825 0.839 0.846 0.849 0.745 0.420
2�14 0.739 0.787 0.806 0.819 0.832 0.738 0.418
estimators to converge at the same rate per frame), but in fact it
is better for the column corrector to converge as early as possible.
This helps the pixel mean estimators to converge into correct val-
ues (that is, values accounting for the photodetector induced noise
only, excluding any noise caused by the column amplifier). We will
assume a ¼ 2�8 and a0 ¼ 2�12 for the subsequent tests. Thus, the
column estimators will converge 240

16 ¼ 15 times more quickly than
the pixel estimators. Once acceptable values for a and a0 chosen, it
is possible to choose the estimator data-type. Since the required
estimator precision depends on the value of a or a0 (as seen on
Eq. 6), it is advisable to store the column estimators with log2

a0
a

more bits than the pixel estimators. This leads to column estima-
tors 4 bits larger than pixel estimators for the same computational
precision, assuming the previously chosen values for a and a0. As
previously for Table 1, a software version of pipeline B has been
used to evaluate the correction quality depending on the estimator
data-types and precision. Table 2 gives the correction quality by
testing several candidate data-types. As we hoped, fixed point
arithmetics are as suitable as floating point arithmetics, both with
a value of 0.849 for correction quality. It confirms that FPGAs are
good candidates for the implementation of FPN correctors. In the
rest of this Section, we will assume the use of 16-bit fixed-point
pixel estimators and 20-bit fixed-point column estimators.

Table 3 shows the impact of the low-pass filtering method and
window size on the correction quality. Data are also obtained from
the software implementation of pipeline B. One can see that the
one-line filter (noted as1� 1) gives quite honorable results com-
pared to full-fledged rectangular window filtering, while being
much simpler and not requiring any on-chip RAM at all. As ex-
pected, the horizontal filtering window size affects the correction
quality more than the vertical window size, due to the column
noise. The best value found is 64� 32 on our test scene.

Finally, the Table 4 compares the three pipelines architectures
proposed earlier, parametrized with the optimum parameters
found until now (16-bit/20-bit fixed-point estimators,
a ¼ 2�8;a0 ¼ 2�12, 64� 32 low-pass filter). Correction quality val-
ues in Table 4 have been evaluated from hardware simulations of
the different architectures using Modelsim.

It also includes for comparison purposes a simplified (no gain
correction) version of the Harris and Chiang corrector. On our test
Fixed point, 18-bit/22-bit 0.849
Floating point, 64-bit/64-bit 0.849

Table 3
Correction quality depending on the low-pass filter parameters (Pipeline B, 16-bit/20-
bit fixed-point estimators, a ¼ 2�8, a0 ¼ 2�12).

2M 2N

2 4 8 16 32 64 1

1 0.143 0.251 0.415 0.600 0.737 0.805 0.905
2 0.184 0.323 0.518 0.713 0.832 0.879
4 0.219 0.383 0.600 0.791 0.891 0.925
8 0.242 0.423 0.648 0.833 0.922 0.950

16 0.253 0.441 0.670 0.849 0.932 0.957
32 0.256 0.448 0.676 0.853 0.934 0.958
64 0.257 0.449 0.677 0.853 0.933 0.958

Table 4
Correction quality depending on pipeline architecture (16-bit/20-bit fixed-point
estimators, a ¼ 2�8;a0 ¼ 2�12, 64� 32 low-pass filter; the simplified version of Harris’
and Chiang’s corrector uses double precision floating point arithmetics).

Architecture Correction quality (UQI/PSNR)

Pipeline A 0.961/36.36 dB
Pipeline B 0.958/36.18 dB
Pipeline C 0.890/28.78 dB
Simplified Harris and Chiang method 0.845/ 24.78 dB

842 T. Toczek et al. / Journal of Systems Architecture 59 (2013) 833–846
sequence just like on the series of 6 other real world sequences, it
results in incorrect low frequency distribution due to unsatisfied
working hypotheses, and yields worse results that any of the three
other pipelines. The Fig. 7 shows a frame near the end of the se-
quence for each of the correction methods, once the estimators
have converged. The pipeline C may produce ‘‘ghost columns’’ just
like the original Harris and Chiang method may produce ‘‘ghost
images’’. It is the case with our test scene (Fig. 7). It may give better
results than the pipelines A or B when there is a significant low fre-
quency component in the column FPN. It is not the case with our
noise model, and is not generally the case with usual visible light
domain sensors.

The pipeline B, which is a little more complex than the A, pro-
vides roughly the same correction quality. It converges a bit faster
because of the column estimators as seen on Fig. 8. It also implies it
may diverge more quickly whenever the working hypotheses of
our algorithm are not met. It might be possible to work around this
limitation, though: an arbiter could disable the column estimator
updates when it detects insufficient variation for a given column
between two consecutive frames. While the same principle could
be applied to the pixel-level corrector, it seems more practical to
implement it on whole columns (dynamic noise is a major problem
at the pixel level). This could allow to avoid the fluctuations in the
MSE when using the pipeline B and which can be seen on Fig. 8.

We have tested the three pipelines over a set of six other short-
er video sequences in order to test the convergence of the proposed
method (Table 5). As in Table 4, hardware simulations using Mod-
elsim have been performed to evaluate the correction quality.

Each sequence only contains 125 frames, which is about eight
times shorter than the previous test sequence. Sequences 1 and 2
use a still camera while some subjects are moving over part of
its field of view. Sequence 1 has an uniform background, while se-
quence 2 has a very detailed still background (hence violating our
third hypothesis). Sequences 3 to 6 involve a moving camera, and
vary by the level of luminosity and of contrast. Sequences 3 and 4
are rather bright, while sequences 5 and 6 are almost pitch dark.
High contrast elements are found on the sequences 4 and 6. The
reference sequence is the one used in the previous tables, but re-
stricted to its 125 first frames, for comparison purposes. Once
Fig. 8. UQI and mean square error depending on the frame
again, the pipeline A gets the best results. As expected, the se-
quence 2 is the least effectively corrected but the proposed method
still outperforms the Harris’ and Chiang’s on that sequence.
According to PSNR measurements, the sequences 3 and 6 are also
poorly corrected, while they are satisfying using a visual criterion,
such as the UQI. On the contrary, the corrected version of the se-
quence 4 shows visual shortcomings while having descent PSNRs
for the three tested pipelines. Globally, the proposed correction
method does not seem to specifically favor bright sequences over
dark ones, and works for different levels of contrast.

If we observe more deeply the detailed results of the 4 different
architectures, we can note the following aspects. First of all, as seen
in Table 5, pipeline C always outperforms the original Harris and
Chiangs method, both in terms of PSNR and UQI, except for the se-
quence 1 (the moving hand on an uniform background). We can
also note that this specific sequence also seems to be well-adapted
to the Harris method because the difference of performance be-
tween pipeline A, pipeline B and Harris and Chiang method are
not significant in terms of image quality (respectively 0.895,
0.885, and 0.881). Secondly, as previously mentioned, the column
estimators converge 15 times more quickly than the pixel estima-
tors if the working conditions are met. This gives to pipeline B and
pipeline C significant advantages compared to pipeline A and Har-
ris method. Finally, the main difference between pipeline B and
pipeline C is that the column-level correction of pipeline C runs be-
fore the lowpass filter. Compared to pipeline B, this approach gives
similar or even lightly superior performance for sequences 4–6 in
which we find poor illuminated areas. In other sequences, the per-
formance of pipeline C is lower, and particularly in terms of PSNR,
revealing that the column estimators not only filter noise but also
signal.
5.2. Implementation on a smart camera

We have worked on implementing the proposed corrector using
the Industrial Video Processing Kit commercialized by Avnet (part
reference: AES-S6IVK-LX150T-G). It is composed of the general-
purpose Avnet Spartan-6 LX150T development board (based on
the Xilinx XC6SLX150T-3FGG676 FPGA) and of two FMC (FPGA
Mezzanine Card) daughter cards with IO ports dedicated to video
processing. It is shipped with an omnivision OV9715 image sensor
[48], which can be connected to one of the daughter FMCs, and is
capable of video capture at resolutions up to 1280 � 800 at 30
frames per second. The Fig. 9 is a photograph of the whole setup.

We have implemented the different parts of the proposed cor-
rection pipelines and assembled them into a pcore for use with
the Xilinx EDK (Embedded Development Kit). Proceeding like this
eases its reuse can allows its parametrization through memory-
mapped registers accessible from software via the PLB (Processor
number; same sequence and parameters as in Table 4.

Table 5
Correction quality for six shorter scenes (125 frames only, correction quality evaluated on the last 12 frames). Same parameters as in table 4, save for a ¼ 2�5 and a0 ¼ 2�9. For
comparison purposes, the previously used test sequence shortened to 125 frames appears in the column ‘‘ref. seq’’.

Architecture Correction quality (UQI/PSNR)

Seq. 1 Seq. 2 Seq. 3 Seq. 4 Seq. 5 Seq. 6 Ref. seq.

Pipeline A 0.895 0.254 0.941 0.762 0.914 0.833 0.912
/ 35.50 dB / 20.11 dB / 22.87 dB / 33.01 dB / 36.78 dB / 22.40 dB /

34.42 dB
Pipeline B 0.885 0.250 0.940 0.700 0.907 0.827 0.888

/ 34.25 dB / 20.10 dB / 22.23 dB / 31.04 dB / 36.72 dB / 22.22 dB /
33.54 dB

Pipeline C 0.840 0.220 0.875 0.683 0.917 0.823 0.876
/ 23.82 dB / 18.23 dB / 19.63 dB / 31.92 dB / 37.73 dB / 21.84 dB /

30.38 dB
Simplified Harris 0.881 0.203 0.510 0.417 0.901 0.795 0.850
and Chiang

method
/ 27.18 dB / 14.59 dB / 12.88 dB / 23.76 dB / 34.29 dB / 16.47 dB /

25.89 dB

Fig. 9. The Avnet Industrial Video Processing Kit.

T. Toczek et al. / Journal of Systems Architecture 59 (2013) 833–846 843
Local Bus) bus. The resulting pcore can be instantiated inside virtu-
ally any existing XPS (Xilinx Platform Studio) design just between
the camera input and the first actual video processing IP.

The implementation itself has been done in VHDL and in Hask-
ell. VHDL was used for the control-dominated components, for
Fig. 10. Minimalist correc
those dealing with more than one clock domain (typically, at the
interface with the memory controller), and whenever the critical
path length was not a limiting factor. We have used an in-house
Haskell based hardware description embedded language [49] to
generate pipelined netlists from combinatorial datapaths. Most of
the low pass and corrector blocks, which are arithmetics-domi-
nated, could be implemented quite straightforwardly this way.
One of the benefits of our automatized pipelining process is that
arithmetical operators (such as adders, subtractors or multipliers)
are not necessarily bound to a single pipeline stage, as it is the case
when using a VHDL library such as IEEE numeric_std. On the con-
trary, the pipeline stages were generated in such a way that the
critical paths of the different stages have approximately the same
length. As a result, in our implementation the barriers between
pipeline stages do not match those shown on the schematics of
Fig. 5 and Fig. 6. However, as discussed later in this section, the
illustrated total pipeline stage count is sensible.

A minimalist design was used for our tests as illustrated on
Fig. 10. It is a system with two DMAs: one used to write at 30
frames per second the output of the sensor to the external DDR3
memory, and the other to read it and output it through a DVI port
at 60 frames per second. In order to cope with these two different
framerates, each processed frame is read and displayed twice on
the screen. The sensor output is treated with our corrector before
tor pcore test design.

Table 6
FPGA implementation performance and ressource usage, depending on pipeline depths.

Pipeline stages Frequency (MHz) Pipeline A Pipeline B Pipeline C

Lowpass Corrector # Registers # LUTs # Registers # LUTs # Registers # LUTs

1 1 80.652 496 176 580 289 742 311
2 2 99.502 608 277 748 280 910 302
4 3 140.076 773 497 994 762 1156 784
5 4 149.410 844 490 1099 745 1261 767
6 4 169.319 895 475 1172 596 1334 618
7 5 129.232 946 513 1258 786 1420 808
8 6 158.278 1007 503 1348 854 1510 876

11 8 148.170 1128 517 1546 671 1708 693
22 16 134.391 1347 719 1878 1124 2040 1146

844 T. Toczek et al. / Journal of Systems Architecture 59 (2013) 833–846
being transmitted to the DMA controller. Finally, a Xilinx Micro-
blaze softcore is used to handle the initialization of all the periph-
erals, and can be used during operation to alter parameters such as
sensor exposure and gain, resolution, and so on. During our tests,
those parameters have been fixed and any automatic sensor behav-
ior disabled. Nevertheless, our correction pipeline should be able to
operate with automatic exposure and gain adjustments, as long as
their variations are slow. It should also be possible to feed in real
time the sensor gain value to the corrector for better results, espe-
cially with quickly varying gain. Those aspects are currently being
investigated and will not be discussed further in this paper.

We have evaluated the hardware complexity of our pipelines in
the case where they use a NPI (native port interface) point-to-point
link to the Xilinx MPMC external memory controller and the one-
line version of the lowpass filter. The NPI interface is the simplest
of the interfaces supported by the MPMC, but requires synchronic-
ity with the MPMC clock domain (which differs from the video in-
put clock domain in our system). Other possible implementation
choices were the use of the VFBC (video frame buffer controller)
point-to-point link, or simply to access the memory controller
through the PLB. However, using the NPI interface as well as the
one-line filter, much simplier than a conventional rectangle win-
dow low pass filter, allows us to get an upper bound of the fre-
quency achievable and a lower bound of the slice usage.

The Table 6 sums up the performance of the correction pcore
and its resource usage measured on the above-described test sys-
tem, depending on the parameters passed to our pipelining tool.
As expected, the higher the pipeline stage count, the higher the
register count and the higher the slice usage, as more of them
are used either as registers without accompanying logic, or simply
as route-thrus. The highest reachable frequency is around
169 MHz, when using 6 pipeline stages for the low pass filter and
4 stages per corrector (the pixel and column correctors share the
same architecture, so their pipelines have the same length). The
maximum frequency goes down when using deeper pipelines,
most likely due to routing issues as the number of slices increases.
It is interesting to note that in our test system, we could have affor-
ded to use single stage correctors, as the sensor input clockrate is
40 MHz. This is not the case for systems using better cameras: with
a sensor capable of 1080p capture at 60 Hz, a working frequency of
125 MHz or higher is necessary, requiring moderately deep correc-
tion pipeline use. When comparing the resources used those avail-
able in the FPGA, the slice register usage ranges from 0.27% to
1.11%, and the slice LUT usage from 0.20% to 1.25%.
6. Conclusion

We have proposed an improved algorithm for FPN correction in
visible light sensors and three associated architectural pipelines
that can be easily implemented in any FPGA-based smart camera.
Its hardware complexity is marginally higher than that of a simple
reference image while it significantly achieves improved quality of
resulting images. Moreover, it is more robust to variations in the
sensor environment or operating mode. Contrarily to the original
approach we improve on, it is capable of handling a wide variety
of scenes correctly by separating the signal from the noise in a
more reliable fashion. This is achieved by taking into account infor-
mation from the spatial neighborhood of the pixels being
corrected.

Finally, our correction pipeline adds little latency in most cases
and hence is suited for incorporation in applications where this is
an issue. A first notable future work perspective is the automatic
detection of static scenes. Indeed, a mechanism to temporarily pre-
vent the update of estimators when two consecutive frames are too
similar would allow to preserve their correctly computed values
when the convergence hypotheses are not met, further increasing
correction robustness. A second perspective is the implementation
of this method in other FPGA smart cameras developed in our re-
search group. We aim at implementing such a correction method
to the HDR-ARtist platform [50] dedicated to high dynamic range
imaging in order to achieve the best quality possible.

Acknowledgment

The authors thank the DGCIS (French Ministry for Industry) for
financial support within the framework of the project HiDRaLoN.

References

[1] H. Tian, Noise analysis in cmos image sensors (Ph.D. thesis), 2000.
[2] H. Tian, B. Fowler, A. Gamal, Analysis of temporal noise in cmos photodiode

active pixel sensor, IEEE Journal of Solid-State Circuits 36 (1) (2001) 92–101.
[3] J. Nakamura, Image Sensors and Signal Processing for Digital Still Cameras, CRC

Press, Inc., Boca Raton, FL, USA, 2005.
[4] S. Morfu, P. Marquie, B. Nofiele, D. Ginhac, Nonlinear systems for image

processing, in: P.W. Hawkes (Ed.), Advances in imaging and electron physics,
Advances in Imaging and Electron Physics, vol. 152, Elsevier, 2008, pp. 79–151.

[5] HPComponentsGroup, Noise sources in CMOS image sensors, Tech. Rep.,
Hewlett-Packard Company, 1998.

[6] A.E. Gamal, B. Fowler, H. Min, X. Liu, Modeling and estimation of fpn
components in cmos image sensors, in: Proc. SPIE, Solid State Sensor Arrays:
Development and Applications II, vol. 3301, 1998, pp. 168–177.

[7] A. ElGamal, H. Eltoukhy, Cmos image sensors, IEEE Circuits and Devices
Magazine 21 (3) (2005) 6–20.

[8] M.V. Konnik, J.S. Welsh, On numerical simulation of high-speed ccd/cmos-
based wavefront sensors in adaptive optics, SPIE 8149 (2011).

[9] S.C. Kelly, R.M. Guidash, B.H. Pillman, Fixed pattern noise removal in cmos
imagers across various operational conditions, 2008.

[10] M. Schberl, C. Senel, S. Fel, H. Bloss, A. Kaup, Non-linear dark current fixed
pattern noise compensation for variable frame rate moving picture cameras,
in: Proceedings of European Signal Processing Conference (EUSIPCO), Glasgow,
Scotland, 2009.

[11] M. Bigas, E. Cabruja, J. Forest, J. Salvi, Review of cmos image sensors,
Microelectronics Journal 37 (5) (2006) 433–451.

[12] B. Fowler, A.E. Gamal, D. Yang, H. Tian, A method for estimating quantum
efficiency for cmos image sensors, in: Proc. SPIE, Solid State Sensor Arrays:
Development and Applications II, vol. 3301, 1998, pp. 178–185.

[13] M. Schoandberl, S. Foandssel, A. Kaup, Fixed pattern noise column drift
compensation (cdc) for digital moving picture cameras, in: Image Processing
(ICIP), 2010 17th IEEE International Conference on 2010, pp. 573–576.

http://refhub.elsevier.com/S1383-7621(13)00098-2/h0005
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0005
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0010
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0010
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0010
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0015
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0015
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0015
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0015
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0015
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0020
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0020
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0025
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0025
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0030
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0030

T. Toczek et al. / Journal of Systems Architecture 59 (2013) 833–846 845
[14] S. Otim, B. Choubey, D. Joseph, S. Collins, Characterization and simple fixed
pattern noise correction in wide dynamic range logarithmic imagers, IEEE
Transactions on Instrumentation and Measurement 56 (5) (2007) 1910–
1916.

[15] R. Nixon, S. Kemeny, B. Pain, C. Staller, E. Fossum, 256 � 256 cmos active pixel
sensor camera-on-a-chip, IEEE Journal of Solid-State Circuits 31 (12) (1996)
2046–2050.

[16] R. Guidash, T.H. Lee, P. Lee, D. Sackett, C. Drowley, M. Swenson, et al., A 0.6mu
cmos pinned photodiode color imager technology, in: IEDM’97, Electron
Devices Meeting, 1997, Technical Digest 1997, pp. 927–929.

[17] K. Yonemoto, H. Sumi, A cmos image sensor with a simple fixed-pattern-noise-
reduction technology and a hole accumulation diode, IEEE Journal of Solid-
State Circuits 35 (12) (2000) 2038–2043.

[18] S. Kavadias, B. Dierickx, D. Scheffer, A. Alaerts, D. Uwaerts, J. Bogaerts, A
logarithmic response cmos image sensor with on-chip calibration, IEEE Journal
of Solid-State Circuits 35 (8) (2000) 1146–1152.

[19] M. Loose, K. Meier, J. Schemmel, A self-calibrating single-chip cmos camera
with logarithmic response, IEEE Journal of Solid-State Circuits 36 (4) (2001)
586–596.

[20] Y. Degerli, F. Lavernhe, P. Magnan, P. Farre, Column readout circuit with global
charge amplifier for cmos aps imagers, Electronics Letters 36 (17) (2000)
1457–1459.

[21] B. Dierickx, B. Dierickx, D. Scheffer, D. Scheffer, G. Meynants, G. Meynants,
et al., Random addressable active pixel image sensors, in: Proceedings of the
SPIE, vol. 2950, 1996, pp. 2–7.

[22] S. Kavadias, B. Dierickx, D. Scheffer, On-chip offset calibrated logarithmic
response image sensor, in: Proc. IEEE Workshop Charge-Coupled Devices and
Advanced Image Sensors, 1999, pp. 68–71.

[23] L.W. Lai, C.H. Lai, Y.C. King, A novel logarithmic response cmos image sensor
with high output voltage swing and in-pixel fixed-pattern noise reduction,
IEEE Sensors Journal 4 (1) (2004) 122–126.

[24] R. Mosqueron, J. Dubois, M. Paindavoine, High-speed smart camera with high
resolution, EURASIP Journal on Embedded Systems 1 (2007) 024163.

[25] R. Mosqueron, J. Dubois, M. Mattavelli, D. Mauvilet, Smart camera based on
embedded hw/sw coprocessor, EURASIP Journal on Embedded Systems 1
(2008) 597872.

[26] F.D. Real, F. Berry, Smart cameras: technologies and applications, in: A.N.
Belbachir (Ed.), Smart Cameras, Springer, US, 2010, ISBN 978-1-4419-0953-4,
pp. 35–50.

[27] P.J. Lapray, B. Heyrman, M. Rosse, D. Ginhac, Smart camera design for realtime
high dynamic range imaging, in: Fifth ACM/IEEE International Conference on
Distributed Smart Cameras (ICDSC 2011), 2011, pp. 1–7.

[28] J. Harris, Y.M. Chiang, Nonuniformity correction using the constant-statistics
constraint: analog and digital implementations, in: Proceedings of SPIE, vol.
3061, 1997, pp. 895–905.

[29] B. Ratliff, M. Hayat, J. Tyo, Generalized algebraic scene-based nonuniformity
correction algorithm, Journal of the Optical Society of America A 22 (2) (2005)
239–249.

[30] M. Richard, G.C. Malueg, Detector array fixed-pattern noise compensation,
1976.

[31] A. Friedenberg, I. Goldblatt, Nonuniformity two-point linear correction errors
in infrared focal plane arrays, Optical Engineering 37 (4) (1998) 1251–1253.

[32] J.W. Newman, Method and apparatus for image signal compensation of dark
current, focal plane temperature, and electronics temperature, 2007.

[33] A. Bosco, K. Findlater, S. Battiato, A. Castorina, A temporal noise reduction filter
based on image sensor full-frame data, in: IEEE International Conference on
Consumer Electronics, ICCE 2003, 2003, pp. 402–403.

[34] A. Bosco, K. Findlater, S. Battiato, A. Castorina, A noise reduction filter for full-
frame data imaging devices, IEEE Transactions on Consumer Electronics 49 (3)
(2003).

[35] T. Huang, L. Xiao-Lin, S. Yang, Fixed pattern noise suppression algorithm based
on background modeling, Procedia Engineering 29 (2012) 884–888.

[36] U. Sakoglu, R. Hardie, M. Hayat, B. Ratliff, J. Tyo, Nan algebraic restoration
method for estimating fixed pattern noise in infrared imagery from a video
sequence, in: 9th Annual Meeting of the SPIE: Applications of Digital Image
Processing XXVII, Denver, CO., SPIE Proc, vol. 5558, 2004, pp. 69–79.

[37] R.C. Hardie, M.M. Hayat, E. Armstrong, B. Yasuda, Scene-based nonuniformity
correction with video sequences and registration, Applied Optics 39 (8) (2000)
1241–1250.

[38] P. Torle, I.A. Andersson, L. Haglund, Scene-based correction of image sensor
deficiencies, SPIE 5074 (2003) 249–260.

[39] C. Zuo, Q. Chen, G. Gu, X. Sui, Scene-based nonuniformity correction algorithm
based on interframe registration, Journal of the Optical Society of America A 28
(6) (2011).

[40] B.M. Ratliff, M.M. Hayat, R.C. Hardie, An algebraic algorithm for nonuniformity
correction in focal-plane arrays, Journal of the Optical Society of America A 19
(9) (2002) 1737–1747.

[41] J. Harris, Continuous-time calibration of vlsi sensors for gain and offset
variations, in: Proceedings of the SPIE: Smart Focal Plane Arrays and Focal
Plane Array Testing, vol. 2474, 1995, p. 2333.

[42] E. Vera, R. Reeves, S. Torres, Adaptive bias compensation for non-uniformity
correction on infrared focal plane array detectors, in: HIS, 2002, pp. 725–734.

[43] C. Zhang, W. Zhao, Scene-based nonuniformity correction using local constant
statistics, Journal of the Optical Society of America A 25 (6) (2008) 1444–1453.

[44] C. Zuo, Q. Chen, G. Gu, X. Sui, W. Qian, Scene-based nonuniformity correction
method using multiscale constant statistics, Optical Engineering 50 (8) (2011).
[45] R. Figueras, J. Sabadell, J. Margarit, E. Martin, L. Teres, F. Serra-Graells, A 0.18
um cmos low-power charge-integration dps for X-ray imagingm, in:
Biomedical Circuits and Systems Conference, 2009, BioCAS 2009, IEEE 2009,
pp. 209–212.

[46] A. Kumar, S. Sarkar, R. Agarwal, Fixed pattern noise correction and
implementation for infrared focal plane array based staring system using
scene statistics, International Journal of Industrial and Systems Engineering 1
(2007).

[47] Z. Wang, A.C. Bovik, A universal image quality index, IEEE Signal Processing
Letters 9 (3) (2002) 81–84.

[48] Ov9715 1-megapixel product brief, OmniVision Technologies, Inc., 2011.
[49] T. Toczek, D. Houzet, S. Mancini, Another take on functional system-level

design and modeling, in: D. Borrione (Ed.), Advances in Design Methods from
Modeling Languages for Embedded Systems and SoC’s, Lecture Notes in
Electrical Engineering, vol. 63, Springer, Netherlands, 2010, pp. 93–106.

[50] P.J. Lapray, B. Heyrman, M. Rosse, D. Ginhac, Hdr-artist: High dynamic range
advanced real-time imaging system, in: IEEE International Symposium on
Circuits and Systems (ISCAS 2012), 2012, pp. 1–6.

Tomasz Toczek is currently a postdoctoral researcher at
LE2I (Laboratory of Electronics, Computing and Imaging
Sciences; affiliated to the CNRS). He has obtained his
PhD in Micro and Nano-electronics in 2011 from the
University of Grenoble. His research interests include
FPGA prototyping, functional programming for hard-
ware description, and GPU programming.
Faouzi Hamdi is a PhD student in electronics and image
processing at the laboratory Le2i (UMR CNRS 6063) -
Burgundy University, France. His current research
activities include embedded image processing on smart
camera.
Barthelemy Heyrman received his PhD in electronics
and image processing from Burgundy University,
France, in 2005. He is currently associate professor at
the University of Burgundy, France and member of LE2I
UMR CNRS 5158 (Laboratory of Electronic, Computing
and Imaging Sciences). His main research topics are
system on chip smart camera and embedded image
processing chips.
Julien Dubois is associated professor at the University
of Burgundy since 2003. He is a member of the Labo-
ratory Le2i (UMR CNRS 6063). His research interests
include real-time implementation, smart camera,
hardware design based on data-flow modeling, motion
estimation and image compression. In 2001, he received
PhD in Electronics from the University Jean Monnet of
Saint Etienne (France) and joined EPFL based in Lau-
sanne (Switzerland) as a project leader to develop a co-
processor, based on FPGA, for a new CMOS camera.

http://refhub.elsevier.com/S1383-7621(13)00098-2/h0035
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0035
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0035
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0035
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0040
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0040
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0040
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0040
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0040
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0040
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0045
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0045
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0045
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0050
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0050
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0050
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0055
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0055
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0055
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0060
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0060
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0060
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0065
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0065
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0065
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0070
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0070
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0075
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0075
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0075
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0080
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0080
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0080
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0080
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0080
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0085
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0085
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0085
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0090
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0090
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0095
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0095
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0095
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0100
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0100
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0105
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0105
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0105
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0110
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0110
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0115
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0115
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0115
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0120
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0120
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0120
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0125
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0125
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0130
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0130
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0135
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0135
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0135
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0135
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0140
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0140
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0145
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0145
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0145
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0145
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0145
http://refhub.elsevier.com/S1383-7621(13)00098-2/h0145

846 T. Toczek et al. / Journal of Systems Architecture 59 (2013) 833–846
Johel Miteran received the Ph.D. degree in image pro-
cessing from the University of Burgundy, Dijon, France
in 1994. Since 1996, he has been an assistant professor
and since 2006 he has been professor at Le2i, University
of Burgundy. He is now engaged in research on classi-
fication algorithms, face recognition, acess control
problem and real time implementation of these algo-
rithms on software and hardware architecture.
Dominique Ginhac received his PhD in electronics and
image processing from Clermont-Ferrand University,
France, in 1999. He is currently associate professor at
the University of Burgundy, France and member of LE2I
UMR CNRS 5158 (Laboratory of Electronics, Computing
and Imaging Sciences). His main research topics are
hardware design of smart vision systems and imple-
mentation of real-time image processing applications.

	Scene-based non-uniformity correction: From algorithm to implementation on a smart camera
	1 Introduction
	2 FPN correction algorithms
	2.1 Calibration-based methods
	2.2 Dynamic FPN estimation by scene-based methods

	3 Improved constant statistics method
	4 Generic architecture for hardware implementation in a FPGA-based smart camera
	4.1 Correction pipeline architecture
	4.2 Correction block
	4.3 Low-pass filtering

	5 Results
	5.1 Correction quality
	5.2 Implementation on a smart camera

	6 Conclusion
	Acknowledgment
	References

