

HDR-ARtiSt-High Dynamic Range Advanced Real-Time **Imaging** System

B. Hevrman. M. Rossé &

HDR-ARtiSt: High Dynamic Range Advanced Real-Time Imaging System

P.J. Lapray, B. Heyrman, M. Rossé & D. Ginhac

LE2I UMR 5158, Univ Burgundy, Dijon, France Email: Pierre-Jean.Lapray@u-bourgogne.fr

> Tuesday May 22, 2012 ISCAS'12

HDR-ARtiSt: High Dynamic Range Advanced Real-Time Imaging System

P.J. Lapray, B. Heyrman, M. Rossé & D. Ginhac

Introduction
What is HDR
imaging?
What's our goals

What's our goals? Our hardware platform

Real-time HDR Solution

HDR capture Memory Management HDR Blending

Euture

- Introduction
 - What is HDR imaging?
 - What's our goals?
 - Our hardware platform
- Real-time HDR Solution
 - HDR capture
 - Memory Management
 - HDR Blending
 - Tone mapping
- 3 Future

HDR-ARtiSt: High Dynamic Range Advanced Real-Time Imaging System

P.J. Lapray, B. Heyrman, M. Rossé &

Introduction

What is HDR imaging? What's our goals? Our hardware platform

Real-time HDR Solution

HDR capt

Memory Management HDR Blending Tone mapping

Future

Summary

- Introduction
 - What is HDR imaging?
 - What's our goals?
 - Our hardware platform
- Real-time HDR Solution
 - HDR capture
 - Memory Management
 - HDR Blending
 - Tone mapping
- 3 Future

3

HDR-ARtiSt: High Dynamic Range Advanced Real-Time Imaging System

B. Heyrman, M. Rossé & D. Ginhac

Introduction
What is HDR
imaging?
What's our goals
Our hardware
platform

Real-time HDR Solution

HDR capture Memory Management HDR Blending

uture

- High Dynamic Range
- Dynamic Range is measured in Exposure Value (EV) differences or stops between the brightest and the darkest parts of the image. An increase of one stop is doubling the amount of light of the image

Capture limitation

A standard camera is able to capture only a fraction of the visual information.

HDR-ARtiSt: High Dynamic Range Advanced Real-Time Imaging System

P.J. Lapray, B. Heyrman, M. Rossé & D. Ginhac

Introduction What is HDR imaging?

What's our goals Our hardware platform

Real-time HDR Solution

Memory Managemen

HDR Blendin

uture

- For a digital camera, number of stops = bit precision of the ADC (ex : 10 stops for a 10-bit camera) camera
- Real scenes includes sunlit and shaded areas. When capturing a scene, the camera is unable to store the full dynamic range of the scene.

VS

HDR-ARtiSt: High Dynamic Range Advanced Real-Time Imaging

P.J. Lapray, B. Heyrman, M. Rossé & D. Ginhac

System

Introduction What is HDR

imaging? What's our goals? Our hardware platform

Real-time HDR Solution

HDR capt

Management
HDR Blendin
Tone mappin

Future

Limitation on display

- Human eyes perceives a greater Dynamic Range than a digital camera (12 orders of magnitude)
- The standard screens can not transmit to the human eye this dynamic range.

6

HDR-ARtiSt: High Dynamic Range Advanced Real-Time **Imaging** System

M. Rossé &

What is HDR imaging?

- At left, an HDR image consisting of details in dark and illuminated areas
- Below, the acquisitions made by a camera.

HDR-ARtiSt: High Dynamic Range Advanced Real-Time Imaging System

P.J. Lapray, B. Heyrman, M. Rossé & D. Ginhac

Introduction What is HDR imaging?

What's our goal Our hardware platform

HDR Solution

Memory Management

HDR Blendin Tone mapping

-uture

- Another example of B & W HDR image
- (Images acquired by Thales Angenieux)

HDR-ARtiSt: High Dynamic Range Advanced Real-Time Imaging System

P.J. Lapray, B. Heyrman, M. Rossé & D. Ginhac

Introduction What is HDR imaging?

What's our goals Our hardware platform

Real-time HDR Solution

HDR capt

HDR Blendin

Future

Final goal

By limiting the exposure time, the resulting image contains the details in high illumination areas. By increasing the exposure time, the resulting image contains the details in the dark areas.

9

What's our goal?

HDR-ARtiSt: High Dynamic Range Advanced Real-Time Imaging System

P.J. Lapray, B. Heyrman, M. Rossé & D. Ginhac

Introduction
What is HDR
imaging?

What's our goals? Our hardware platform

Real-time HDR Solution

Memory Management HDR Blendin

Future

- Build a dedicated hardware camera on FPGA
- Perform multiple captures, HDR blending, tone mapping and displaying HDR contents
- 60 images/s image processing in real-time
- 1.3 Megapixels

Our hardware platform

HDR-ARtiSt: High Dynamic Range Advanced Real-Time Imaging System

P.J. Lapray, B. Heyrman, M. Rossé & D. Ginhac

Introduction
What is HDR
imaging?
What's our goals'
Our hardware
platform

Real-time HDR Solution

Memory Management HDR Blending Tone mapping

uture

- A Virtex 5 FPGA development board
- e2V sensor: 1.3 Megapixel, 60 images/s, high sensitivity, low power, global shutter mode
- Several communication interfaces: Ethernet, SDRAM (256MB), serial interface, DVI...

HDR-ARtiSt: High Dynamic Range Advanced Real-Time **Imaging** System

B. Hevrman. M. Rossé &

Real-time HDR Solution

Summary

- - What is HDR imaging?
 - What's our goals?
 - Our hardware platform
- Real-time HDR Solution
 - HDR capture
 - Memory Management
 - HDR Blending
 - Tone mapping

HDR capture

HDR-ARtiSt: High Dynamic Range Advanced Real-Time Imaging System

B. Heyrman, M. Rossé & D. Ginhac

Introduction

imaging?
What's our goals?
Our hardware

Real-time HDR Solution

Memory Management HDR Blendin Tone mapping

uture

- The sensor is able to send successively 2 images with 2 different integration times at 60 frames/s
- The integration time varies rapidly during the capture

Memory Management

HDR-ARtiSt: High Dynamic Range Advanced Real-Time Imaging System

P.J. Lapray, B. Heyrman, M. Rossé & D. Ginhac

Introduction What is HDR imaging? What's our goals Our hardware

Real-time HDR Solution

Memory Management

HDR Blendin Tone mappin

Future

Frame buffering for HDR creating

- While we receive one frame from the sensor, we read the last frame from the SDRAM memory and we write the current frame into DDR2 memory
- Finally, we have a 2 streams of Low Dynamic Range images in parallel

HDR-ARtiSt: High Dynamic Range Advanced Real-Time Imaging System

P.J. Lapray, B. Heyrman, M. Rossé & D. Ginhac

Introduction
What is HDR imaging?
What's our goals?

Real-time
HDR Solution

HDR capture Memory Management HDR Blending

Future

Steps of Debevec et al. algorithm

- Having two images : one underexposed and one overexposed
- Knowing the two exposure times
- Knowing the response curve of the sensor
- Applyiing Debevec algorithm for each pixel
- We obtain an HDR image encoded with IEEE754 floating point standard

HDR-ARtiSt: High Dynamic Range Advanced Real-Time Imaging System

P.J. Lapray, B. Heyrman, M. Rossé & D. Ginhac

Introduction

What is HDR imaging?

What's our goals'

Our hardware platform

Real-time HDR Solution

Memory Management HDR Blending

Future

Debevec et al. algorithm

$$\ln E_{i} = \frac{\sum_{j=1}^{P} \omega(Z_{ij})(g(Z_{ij}) - \ln \Delta t_{ij})}{\sum_{j=1}^{P} \omega(Z_{ij})}$$
(1)

Where $\omega(z)$ is the weighting function. It is a simple hat equation. E_i is the irradiance, Z_{ij} is the pixel value of pixel location number i in image j and Δt_{ij} is the exposure duration. The function g is defined as $g = \ln f - 1$. The response curve g is determined by resolving a complex quadratic function in C++.

HDR-ARtiSt: High Dynamic Range Advanced Real-Time Imaging System

B. Heyrman, M. Rossé & D. Ginhac

Introductio

What is HDR imaging?
What's our goals

What's our goals Our hardware platform

Real-time HDR Solution

HDR capture
Memory
Management
HDR Blending

E...+..ro

HDR-ARtiSt: High Dynamic Range Advanced Real-Time Imaging System

P.J. Lapray, B. Heyrman, M. Rossé & D. Ginhac

Introduction
What is HDR
imaging?

imaging?
What's our goals
Our hardware
platform

Real-time HDR Solution

HDR capture Memory Management HDR Blending

Future

Debevec et al. algorithm

Device :	xc5vfx70t-1ff1136
Number of Slice LUTs :	5647/44800 (12%)
Number of Slice Registers :	5975/44800 (13%)
Number of Block RAM/FIFO :	6/148 (4%)
Number of DSP48Es :	4/128 (3%)
Maximum frequency :	184.536 MHz

 $\ensuremath{\mathrm{TABLE}}$: Summary of hardware synthesis report

Tone mapping

HDR-ARtiSt: High Dynamic Range Advanced Real-Time

P.J. Lapray, B. Heyrman, M. Rossé &

Imaging

System

Introduction What is HDR imaging? What's our goals Our hardware

Real-time

HDR captu

Memory Management HDR Blendir

Tone mapping

Future

Make the picture viewable : the tone mapping

- Skip IEEE754 32-bit format to 8-bit
- Allow on-screen standard display
- It is necessary to convert the HDR values to 8-bit integer values in such a way that all the details are still faithfully reproduced: we use the Duan et al. global algorithm.

Tone mapping

HDR-ARtiSt: High Dynamic Range Advanced Real-Time Imaging System

P.J. Lapray, B. Heyrman, M. Rossé & D. Ginhac

Introduction

What is HDR

What's our goals Our hardware

Real-time

HDR capture

Managemen

Tone mapping

I one mappir

Future

Duan et al. algorithm

$$D(I) = C * (D_{max} - D_{min}) + D_{min}$$
with
$$C = \frac{\log(I + \tau) - \log(I_{min} + \tau)}{\log(I_{max} + \tau) - \log(I_{min} + \tau)}$$
(2)

20

Duan et al. algorithm

HDR-ARtiSt: High Dynamic Range Advanced Real-Time Imaging System

P.J. Lapray, B. Heyrman, M. Rossé & D. Ginhac

Introductio

When in HDB

What's our goals

Real-time HDR Solution

HDR Solution

Memory Management

Tone mapping

Tone mappi

uture

2

Tone mapping

HDR-ARtiSt-High Dynamic Range Advanced Real-Time **Imaging** System

B. Hevrman. M. Rossé &

Tone mapping

Duan et al. algorithm

Device: xc5vfx70t-1ff1136

Number of Slice LUTs: 4784/44800 (11%)

Number of Slice Registers: 5025/44800 (10%)

2/128 (1%) Number of DSP48Es:

Maximum frequency: 161.125 MHz

TABLE: Summary of hardware synthesis report

Results

HDR-ARtiSt: High Dynamic Range Advanced Real-Time Imaging System

P.J. Lapray, B. Heyrman, M. Rossé & D. Ginhac

Introduction

What's our goals

Real-time HDR Solution

Memory Managemen

Tone mapping

E.,+,,,,

HDR Video at 60 frames/s

HDR-ARtiSt: High Dynamic Range Advanced Real-Time Imaging System

P.J. Lapray, B. Heyrman, M. Rossé &

Introduction
What is HDR
imaging?
What's our goals
Our hardware

Real-time HDR Solution

Memory Management

Management HDR Blending Tone mapping

Future

Summary

- Introduction
 - What is HDR imaging?
 - What's our goals?
 - Our hardware platform
- Real-time HDR Solution
 - HDR capture
 - Memory Management
 - HDR Blending
 - Tone mapping
- Future

Future

HDR-ARtiSt: High Dynamic Range Advanced Real-Time Imaging System

P.J. Lapray, B. Heyrman, M. Rossé & D. Ginhac

What is HDR imaging?
What's our goals
Our hardware

Real-time HDR Solution

Memory Management HDR Blending

Future

- We work on HDR creating from 3 images for better results
- Build a new camera. Migrate to a Virtex 6 architecture
- An UDP Ethernet communication to fetch video samples
- Implementation of more complex tone mapping algorithm.

Thank you

HDR-ARtiSt: High Dynamic Range Advanced Real-Time Imaging System

P.J. Lapray, B. Heyrman, M. Rossé &

Introduction

What is HDR imaging? What's our goals

What's our goal Our hardware platform

Real-time HDR Solutio

HDR capture Memory Management HDR Blending

Future

Thank you.

HDR-ARtiSt: High Dynamic Range Advanced Real-Time Imaging System

M. Rossé &

2 images.

HDR-ARtiSt: High Dynamic Range Advanced Real-Time Imaging System

P.J. Lapray, B. Heyrman, M. Rossé &

Introduc

What is HDR imaging? What's our goals Our hardware platform

Real-time HDR Solution

HDR capt

Managemen

Tone mappi

Future

Future

3 images.

HDR-ARtiSt: High Dynamic Range Advanced Real-Time Imaging System

B. Heyrman, M. Rossé & D. Ginhac

Introduction

What is HDR imaging?
What's our goals

Real-time HDR Solution

Memory Management HDR Blendin

Future

2 images histogram.

HDR-ARtiSt: High Dynamic Range Advanced Real-Time Imaging System

B. Hevrman. M. Rossé &

Future

Curve g():

$$g(Z_{ij}) = \ln E_i + \ln \Delta t_j \tag{3}$$

Z is a nonlinear function of the original exposureX at the pixel.

$$\mathcal{O} = \sum_{i=1}^{N} \sum_{j=1}^{P} [g(Z_{ij}) - \ln E_i - \ln \Delta t_j]^2 + \lambda \sum_{z=Z_{min}+1}^{Z_{max}-1} g''(z)^2$$
 (4)

Note that the curve can be used to determine radiance values in any image(s) acquired by the imaging process associated with g, not just the images used to recover the response function.

HDR-ARtiSt: High Dynamic Range Advanced Real-Time Imaging System

P.J. Lapray, B. Heyrman, M. Rossé & D. Ginhac

Introduc

What is HDR imaging? What's our goals

What's our goals Our hardware platform

Real-time HDR Solutio

HDR capti

Memory Managemen

Tone mapping

Future

Weighting function :

$$\omega(z) = \begin{cases} z - Z_{min} \text{ for } z \le \frac{1}{2}(Z_{min} + Z_{max}) \\ Z_{max} - z \text{ for } z > \frac{1}{2}(Z_{min} + Z_{max}) \end{cases}$$
 (5)

31

HDR-ARtiSt: High Dynamic Range Advanced Real-Time Imaging System

P.J. Lapray, B. Heyrman, M. Rossé & D. Ginhac

Introduction
What is HDR

imaging?
What's our goals
Our hardware

Real-time HDR Solution

Memory Management HDR Blendin

Tone mapp

Global

Device :	xc5vfx70t-1ff1136
Number of Slice LUTs :	13011/44800 (29%)
Number of Slice Registers :	8010/44800 (17%)
Number of Block RAM/FIFO :	18/148 (12%)
Number of DSP48Es :	6/128 (4%)
Maximum frequency :	128.236 MHz

 $\ensuremath{\mathrm{TABLE}}$: Summary of hardware synthesis report