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Abstract

This paper is a general overview of the SKIPPERKIPPER project, run at Blaise Pascal University

between 1996 and 2002. The main goal of the SKIPPERKIPPER project was to demonstrate the appli-

cability of skeleton-based parallel programming techniques to the fast prototyping of reactive

vision applications. This project has produced several versions of a full-fledged integrated pa-

rallel programming environment (PPE). These PPEs have been used to implement realistic vi-

sion applications, such as road following or vehicle tracking for assisted driving, on embedded

parallel platforms embarked on semi-autonomous vehicles. All versions of SKIPPERKIPPER share a

common front-end and repertoire of skeletons––presented in previous papers––but differ in

the techniques used for implementing skeletons. This paper focuses on these implementation

issues, by making a comparative survey, according to a set of four criteria (efficiency, expres-

sivity, portability, predictability), of these implementation techniques. It also gives an account

of the lessons we have learned, both when dealing with these implementation issues and when

using the resulting tools for prototyping vision applications.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The general context of the SKIPPERKIPPER project is the development of realistic vision

applications for embedded platforms. These applications may be found for instance
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in remote inspecting robots or vehicles equipped with assisted-driving systems, as

presented in [16,25,27]. Although relying on algorithms and programming para-

digms encountered in the mainstream of computer vision, these applications raise

two specific issues. First, they implement reactive systems, operating ‘‘on the fly’’

on digital streams of images. This means that they must be able to absorb input data
and output results at a minimum frequency and produce responses within a maximal

latency. For assisted-driving applications, for instance, the typical frequencies are in

the range of 10–30 frame/s and the maximal latency rarely exceeds 50 ms. Second,

they must meet stringent operational constraints in terms of volume or power con-

sumption, which often rules out implementations based upon stock-hardware.

These requirements can be met by resorting to embedded parallel machines. The

TRANSVISIONRANSVISION [15,19] platforms, built between 1992 and 1998 at LASMEA, are

examples of this approach. These MIMD architectures, built upon Transputer and
Alpha processors, could deliver significant computing power with a limited volume

and power-consumption, and provided built-in facilities for video i/o. More recently,

we have been investigating the feasibility of a embedded Beowulf-style cluster built

upon PowerPC G4 processors and using the IEEE-1394 interface for fast video i/o.

But relying on parallel machines places severe strains on programmers: in the ab-

sence of high-level parallel programming models and environments, they have to ex-

plicitly take into account every aspect of parallelism such as task partitioning and

mapping, data distribution, communication scheduling or load-balancing. Having
to deal with these low-level details results in long, tedious and error-prone develop-

ment cycles––especially when the persons in charge of developing the algorithms are

image processing and not parallel programming specialists––thus hindering a true

experimental approach. For reactive applications, the problem is reinforced by the

fact that the need to evaluate the dynamic properties of the algorithm at realistic

frame-rate effectively rules out any prototyping phase solely based upon off-line, se-

quential simulation on stock hardware. Parallel programming at a low level of ab-

straction also limits code reusability and portability.
The SKIPPERKIPPER project was developed in response to the aforementioned problems.

Basically, its goal was to ‘‘capture’’––in a efficient and portable way––the expertise

gained by programmers when implementing reactive vision applications using low

level parallel constructs, to make it readily available to algorithmicians and image pro-

cessing specialists. This project has been run at LASMEA from 1996 to now and

has produced four skeleton-based parallel programming environments: SKIPPER-OKIPPER-O,

SKIPPER-IKIPPER-I, SKIPPER-IIKIPPER-II and SKIPPER-DKIPPER-D. These results have been described in previ-

ous papers [9,16,24,25,27] but in a rather separate manner. The goal of this paper is
to provide a global presentation of these separate accounts and to provide a compara-

tive assessment of the successive versions of SKIPPERKIPPER. It explains in particular why

these versions, which share a common formalism for specifying parallel programs, dif-

fer significantly in the techniques used for implementing skeletons. It is organized as

follows. Section 2 is a brief recall of SKIPPERKIPPER principles and general architecture. Sec-

tion 3 presents the successive versions of SKIPPERKIPPER and the criteria used to assess them.

Section 4 summarizes the results of this assessment. Section 5 is a brief review of re-

lated work and Section 6 concludes this paper and outlines directions for future work.
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2. SKIPPER generic architecture

The SKIPPERKIPPER programming methodology is based upon the concept of algorith-

mic skeletons [7,8]. Skeletons are high-level program constructs that abstract com-

mon patterns of parallel computation in a parametric way. With this approach,
the structure of a parallel application is expressed only as a combination of the skele-

tons provided. The repertoire of skeletons acts as a sort of ‘‘parallel toolbox’’ from

which parallel programs can be built with a minimal concern for low-level details.

Fig. 1 gives the general software architecture of the SKIPPERKIPPER parallel programming

environments. The application programmer provides a skeletal, structured descrip-

tion of the parallel program, the set of application-specific sequential functions used

to instantiate the skeletons and a description of the target architecture. The SKIPPERKIPPER

suite of tools turns these descriptions into executable parallel code. The main soft-
ware components are: a library of skeletons, a compile-time system (CTS) for gener-

ating the parallel C code and a run-time system (RTS) providing support for

executing this parallel code on the target platform. The CTS can be further decom-

posed into a front-end, whose goal is to generate a target-independent intermediate

representation of the parallel program, and a back-end system, in charge of mapping

this intermediate representation onto the target architecture.

2.1. The skeleton library

The SKIPPERKIPPER library of skeletons was built ‘‘bottom-up’’, from a careful analysis

of a large corpus of existing low-to-mid level vision applications hand-coded in par-

allel C [27]. It consists of three skeletons: 1

• the SCMSCM (split–compute–merge) skeleton is devoted to fixed data-parallelism, for

instance to ‘‘geometric’’ processing of iconic data, in which the input image is split

into a fixed number of subimages, each subimage being processed independently,
and the final result is obtained by merging the results computed on subimages;

• the DFDF (data-farming) skeleton handles variable data-parallelism, i.e., situations

in which the number of data to process is not known at compile time;

• the TFTF skeleton is a generalisation of the DFDF skeleton, in which the processing of

one data item may recursively generate new items to be processed. It is generally

used to implement divide-and-conquer strategies.

Each skeleton comes with two semantics: a declarative semantics, which gives its
‘‘meaning’’ to the application programmer in an implicitly parallel manner, i.e.,

1 A fourth skeleton (ITERMEMITERMEM) is described in previous papers. This skeleton does not actually

encapsulate parallel behavior, but is used whenever the iterative nature of the real-time vision algorithms––

i.e., the fact that they do not process single images but continuous streams of images––has to be made

explicit. It will not be discussed here.
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without any reference to an underlying execution model, and an operational seman-

tics which provides an explicitly parallel description of the skeleton.

The declarative semantics of each skeleton is shared by all SKIPPERVKIPPERVersions. It is

conveyed using the CAMLAML language, using higher-order polymorphic functions. The
corresponding definitions are given in Fig. 2. Potential (implicit) parallelism arises

from the use of the map and foldl1 higher-order functions. 2

Fig. 1. SKIPPERKIPPER general software architecture.

2 These higher-order functions apply a function and iterate a (commutative, associative) binary operator

over a list of elements, respectively,map f ½x1; x2; . . . ; xn� ¼ ½f ðx1Þ; f ðx2Þ; . . . ; f ðxnÞ�foldl1� ½x1; x2; . . . ; xn�
¼ x1 � x2 � � � � � xn.
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The operational semantics of a skeleton varies according to the nature of the inter-
mediate representation used by the CTS. In the successive versions of SKIPPERKIPPER, we

have been experimenting with four types of intermediate representation: static

data-flow graphs (for SKIPPER-OKIPPER-O), parametric process networks (for SKIPPER-IKIPPER-I),

hierarchical task graphs (for SKIPPER-IIKIPPER-II) and tagged-token data-flow graphs (for

SKIPPER-DKIPPER-D). These representations will be discussed in turn in Sections 3.1–3.4.

SKIPPERKIPPER also relies on the CAMLAML language for expressing the parallel (skeletal)

structure of the programs. The programmer indicates which skeletons are used, in

what order and, for each skeleton, the sequential functions and/or numeric values
given as parameters. 3 This is illustrated in Fig. 3, with a small program making

use of the SCMSCM skeletons to process an image. Here get, splitrow, filt, conv,

mergerow and disp are the application specific, sequential functions: splitrow

decomposes an image into horizontal sub-images, filt and conv respectively apply

a median filter and a convolution mask on a (sub)image and mergerow concate-

nates subimages into a single one. The get function retrieves the next image from

the video input stream and the disp function displays the result image on the screen.

� is the CAMLAML infix operator denoting function composition.
In the previous example, the application-specific sequential functions are written in

C. This point is of great practical importance since we do not want application pro-

grammers to recode their algorithms from scratch (and especially in CAMLAML). The

prototype of the functions used in the previous example are given in Fig. 4.

The role of the back-end in the CTS is to map the intermediate representation of

the parallel program (data-flow graph, process network, etc.) onto the target archi-

tecture. For an MIMD target with distributed memory, for example, this involves

finding a distribution of the operations/processes on the processors and a scheduling
of the communications on the provided medium (bus, point-to-point links, etc.). The

distribution and the scheduling can be static––i.e., done at compile time––or dy-

namic––i.e., postponed until run-time. Both approaches require some kind of

Fig. 2. Declarative semantics of SKIPPERKIPPER skeletons.

3 The need to pass and return functions and values from various types to/from other functions explains

the choice of a higher-order, polymorphic language, such as CAMLAML, for specifying skeletons and skeletal

programs in SKIPPER.KIPPER.
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RTS. For static approaches, the RTS can take the form of a reduced set of primitives,

providing mechanisms for synchronizing threads of computations and exchanging

messages between processors. 4 For dynamic approaches, it must include more so-

phisticated mechanisms for scheduling threads and/or process and dynamically man-
aging communication buffers, etc. For this reason, static approaches generally lead

to better (and more predictable) performances. But, as evidenced in Section 3.1, they

may lack expressivity. Dynamic approaches, on the other hand, do not suffer from

this limitation but this is generally obtained at the expense of reduced performances

and predictability (as evidenced in Sections 3.3 and 3.4). The SKIPPERKIPPER project has

covered a wide spectrum of distribution and scheduling techniques, ranging from en-

tirely static to fully dynamic, making it possible to assess the relative merits and flaws

of these techniques in the context of a skeleton-based methodology.
Depending on the distribution and scheduling technique used in the back-end, the

parallel code takes the form of a set of either MPMD (one distinct program per pro-

cessor) or SPMD (the same program for all processors) programs. These programs

are linked with the code of the RTS and the definition of the application specific se-

quential functions to produce the executable parallel code.

3. Comparative assessment

All versions of SKIPPERKIPPER share the general architecture described in the previous

section. They differ in the type of intermediate representation produced by the

front-end and in the distribution/scheduling technique used by the back-end. The

Fig. 3. A sample skeletal program.

Fig. 4. Prototype of sequential functions.

4 These primitives can use architecture-specific instructions or portable OS-level facilities such as MPI

for example.
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consequences of these implementation choices will be analysed in turn in the follow-

ing sections according to four criteria:

Efficiency. Efficiency will be assessed either by observing the obtained speedups on

realistic or synthetic 5 test applications or by comparing the run-time performances

of the ‘‘skeletized’’ application to those obtained with a hand-crafted parallel version
using C+MPI. 6

Portability. Here, we mean the ability to port a given version of the SKIPPERKIPPER suite

of tools onto a new parallel platform. Given the layered software architecture of

SKIPPERKIPPER, these portability issues mainly concern the RTS: the smaller (and the sim-

pler) this RTS, the more portable the corresponding SKIPPERKIPPER version will be. More-

over, in our context (embedded vision applications), we must eventually consider the

possibility of targeting architectures with little or no OS-level support, 7 such as ma-

chines built from specialized or digital signal processors (DSPs).
Performance predictability. This refers to the possibility to predict the run-time be-

havior of an application (its latency and frequency for example) without actually

running it on the target parallel platform, on the basis of application-specific para-

meters (such as the duration of the sequential functions) and architecture-specific pa-

rameters (such as communication latency). Performance prediction is generally

carried out using analytical cost models and estimated (typical) durations (as in SKIP-KIP-

PER-IPER-I or in most existing skeleton-based PPEs). In the context of reactive applica-

tions, one may need a more deterministic approach, in which strict temporal
bounds can be computed at compile-time.

Expressivity. This refers to the ability to implement an application expressed as an

arbitrary combination of skeletons. In practice, experience has shown that the criti-

cal point here is whether the intermediate representation supports nesting or not,

i.e., the ability for a skeleton to take another skeleton as an argument. Although

it is still unclear whether realistic applications really need nesting (see [8]), its support

has always been perceived as a challenge by skeleton implementors.

3.1. Static data-flow––SKIPPER-0

The first version of SKIPPERKIPPER used an intermediate representation of skeletal pro-

grams as static data-flow graphs (DFG). Skeletons were viewed as parameterisable

data-flow graph patterns, encoded directly in CAMLAML as higher-order functions thanks

to a tool called CAMLFLOWAMLFLOW. An in-depth description of CAMLFLOWAMLFLOW (which is based

upon abstract interpretation) can be found in [26]. The mapping of the DFG onto the

target architecture was handled by a third party software called SYNDEXYNDEX [17]. Both

5 By ‘‘synthetic’’, we mean an application written solely for benchmarking purposes, as opposed to an

application corresponding to a ‘‘real’’ algorithm. Synthetic applications allow an easier adjustment of key

parameters such as ratio between communication and computation costs or data distribution.
6 The first versions of SKIPPERKIPPER were developed for the TRANSVISIONRANSVISION platforms, for which we did not

have a MPI layer at our disposal.
7 By OS-level support, we mean the facilities typically provided by multi-tasking, Unix-like operating

systems: multi-processing, inter-process communication and synchronization, virtual memory, etc.
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the distribution of the operations (the sequential functions associated with nodes)
onto the processors and the scheduling of communications onto inter-processor

channels were static. The result of SYNDEXYNDEX distribution and scheduling is a set of

processor-independent programs, 8 one per processor, built from a small kernel of

primitives. These primitives offers support for static thread creation, thread commu-

nication and call of user-supplied sequential functions. The final parallel C code was

obtained by simply providing definitions for these kernel primitives according to the

available hardware facilities. 9 The complete compilation path for SKIPPER-OKIPPER-O is il-

lustrated in Fig. 5.
The SKIPPER-OKIPPER-O environment is further illustrated in Fig. 6, which shows the SYN-YN-

DEXDEX session used for implementing the program given in Fig. 3. The left window

shows the corresponding data-flow graph along with the target architecture (four

ring-interconnected C40 processors here). The right window illustrates the static

mapping of operations onto processors computed by SYNDEXYNDEX (oval boxes represent

operations, diagonal lines communications and columns processors).

Assessment. With SKIPPER-OKIPPER-O, the overhead of the run-time system was virtually

zero, since all decisions regarding distribution and scheduling were taken at compile-
time. This resulted, at least for programs relying on mid and coarse grain fixed data-

Fig. 5. Compilation path in SKIPPER-OKIPPER-O.

8 m4 macro-code.
9 For the TRANSVISIONRANSVISION platforms, for example, the primitives used the built-in process switching and

channel i/o of the Transputer. But the Kernel can be easily ported to other systems, for instance Unix/

Linux-based multi-processors communicating trough TCP/IP sockets or MPI.
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parallelism, in high efficiency. This is evidenced in Fig. 7 which gives the total latency

and relative speedup for an application computing histograms of gray level images

and implemented on a multi-transputer machine. 10

For the same reason, predictability was very good, with measured performances

never differing from those predicted by more than 5%. Performance prediction in

SKIPPER-OKIPPER-O actually required two passes: in the first pass, rough estimates of the du-

rations of the sequential functions were given to SYNDEXYNDEX, which generated a first,

sub-optimal, parallel program but with automatic profiling instructions inserted in

Fig. 7. SKIPPER-OKIPPER-O performance figures (scm skeleton).

Fig. 6. A SYNDEXYNDEX session in SKIPPER-OKIPPER-O.

10 T800, 25 MHz processors, 10 Mb/s point-to-point links. At the time SKIPPER-OKIPPER-O was designed, this

platform was the only one available.
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it. This program could then be run on typical data to extract the real durations.

These durations were used in turn to obtain the final program by means of a map-

ping and scheduling heuristic based upon minimization of the total latency. One

could also use upper bounds for function durations in order to predict worst case

behavior, in order to satisfy hard real time constraints for instance. 11 Finally, por-
tability was also good: because the output macro-code was built on a small set of

kernel primitives, re-targeting an application on an architecture built from a new

processor type only required (re)writing this set of kernel primitives. This proved

to be a straightforward task for the platform we had to deal with. 12

The main problem with SKIPPER-OKIPPER-O was expressivity. Indeed, giving an operational

semantics to the DFDF and TFTF skeletons in terms of static DFG was problematic. Con-

sider the DFDF skeleton, for instance. This skeleton is used to apply a function to a list of

data items when the size of the list is unknown and/or the time to process one item can
vary significantly. 13 In this case, a static allocation of the operations (items) to pro-

cessors is not always possible and would result, anyway, in an uneven work-load be-

tween processors (which in turn results in a poor efficiency). The classical solution is

therefore to give the operational semantics of the DFDF skeleton as a process network

and to rely on a farming protocol to ensure load-balancing: a master process dynam-

ically doles out items to a pool of worker processes and collects results back, on a

‘‘first done, first served’’ basis. This model, however, cannot be implemented using

a static mechanism, in which all communications must be scheduled at compile-time.

3.2. Template-based implementation––SKIPPER-1

In SKIPPER-IKIPPER-I, the limitations of SKIPPER-OKIPPER-O were overcome by relying on process

networks for the intermediate representation of skeletal programs and on implemen-

tation templates for skeletons. This approach is the most widely used for existing

skeleton-based PPEs (like those cited in Section 5). Implementation templates are

‘‘known parametric parallel process networks that efficiently implement a skeleton on

a particular parallel target architecture at hand ’’ [13]. They generally take the form

of process graphs that can be parameterized in the parallelism degree (the number

of worker nodes for instance) and the sequential function(s) associated with each

node. The intermediate representation of the application as a process network is then

obtained by instantiating the skeleton templates. 14 The most often claimed advan-

tage of template-based approaches is that, being written once and for all for a given

11 To our knowledge, SKIPPER-OKIPPER-O is the only realization of a skeleton-based PPE capable of handling

such hard real-time timing constraints.
12 The kernel definition for the Transputer processor was less than 300 lines of m4 code. Kernels have

been written for several well-know DSPs and also for clusters of Unix machines running TCP/IP

communication layers.
13 This situation is frequent in reactive vision, where a varying number of regions of interest, of varying

size, often have to be processed in each frame.
14 This instantiation is done on the basis of the provided application-specific sequential functions. It can

also take architectural parameters into account, to adjust the declared parallelism degree of the skeleton to

the one actually offered by the architecture for instance.
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architecture, they can be carefully hand-crafted to make them both reliable and
highly efficient.

The CAMLFLOWAMLFLOW front-end of SKIPPERKIPPER was therefore modified to produce pro-

cess networks out of CAMLAML skeletal descriptions instead of data-flow graphs. For

this purpose, each skeleton was described (in CAMLAML, again) as a parametric process

network. 15 Fig. 8a gives a parametric process network (PPN) for the DFDF skeleton. 16

This graph is parametric in the number of worker nodes, in the type of data items

exchanged between nodes (denoted with type variables 0a . . .0 b) and in the sequential
functions run on the nodes farmer and worker (this ‘‘parameterization’’ being de-
noted with brackets).

The behavior of the farmer and worker processes was stored separately as a

parametric process template (PPT). A PPT is a piece of sequential code whose behav-

ior can be specialized by providing numeric parameters, data types and/or functional

parameters. 17

The compilation path in SKIPPER-IKIPPER-I was similar to the one depicted in Fig. 5 for

SKIPPER-OKIPPER-O, except that theCAMLFLOWAMLFLOW front-end produced an intermediate represen-

tation in the form of a process network instead of a data-flow graph. 18 The back-end
tasks were still handled by the SYNDEXYNDEX software. This may seem contradictory since,

as stated in Section 3.1, SYNDEXYNDEX can only handle static data flow graphs and not pro-

cess graphs. The solution adopted in SKIPPER-IKIPPER-I was in fact a hybrid solution: process

graphs were ‘‘viewed’’ by SYNDEXYNDEX as data-flow graphs andmapped/scheduled as data-

flow graphs. In particular, SYNDEXYNDEX only scheduled (at compile-time) ‘‘static’’ commu-

nications (the ones that mark the start and the end of a farming skeleton for instance).

The ‘‘dynamic’’ communications (the ones occurring between the master and the

workers during the activity of a farming skeleton) were handled by ad hoc processes

15 To facilitate cross-referencing, we use here the terms introduced in [27]. Conceptually, parametric

process networks are implementation templates.

Fig. 8. The parametric process network of the DFDF skeleton.

16 This graph is a simplified version of the PPN actually in SKIPPER-IKIPPER-I, which appears in Fig. 8b (see

later).
17 Specialization is carried out using macro substitution.
18 A detailed presentation of SKIPPER-IKIPPER-I can be found in [27].
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‘‘hidden’’ in the data-flow nodes. This technique––which amounts to tolerating ‘‘criti-

cal sections’’ of dynamically scheduled code within a globally statically scheduled ap-

plication––is set out in detail in [15]. It is illustrated in Fig. 8b, where ‘‘static’’

communications are denoted with plain lines and ‘‘dynamic’’ ones with dashed lines.

Assessment. The SKIPPER-IKIPPER-I version was the first to support the complete set of
skeletons described in Section 2 and has been used to implement several realistic re-

active vision applications, most noticeably those described in [16] (segmentation by

connected component labeling), [25] (vehicle tracking) and [27] (road tracking).

Thanks to the SYNDEXYNDEX back-end, efficiency remained high (with an overhead never

exceeding 25% compared with hand-written parallel C code for the applications im-

plemented). For applications making use only of ‘‘static’’ skeletons (such as SCMSCM),

this overhead was almost zero, as for SKIPPER-OKIPPER-O. Fig. 9 gives the measured perfor-

mances on a synthetic application, which consists in applying a dummy processing
function to a list of windows of interests (WOIs) in an image. Tests were performed

on a cluster of eight Sun Ultra-5 workstations with a switched Fast Ethernet connec-

tion. Total latency and relative speedup are given for three values (16, 32, 64) of

NBW , the number of WOIs processed in each image (the greater the number, the

more the dynamic farming capabilities of the DFDF skeleton are solicited).

Predictability of performances relied on a set of analytical cost models [15] that

provided accuracy in the range of 10–20%. But, unlike SKIPPER-OKIPPER-O, strict timing

bounds could not always be exhibited: this is clearly the price to pay for accepting
dynamically scheduled skeletons such as DFDF.

The main problem with SKIPPER-IKIPPER-I lay in the hybrid nature of the intermediate

representation. Because dynamic communications were transparent to SYNDEXYNDEX,

the routing of these communications between distant processors had to be handled

explicitly by auxiliary processes (whereas it is done automatically by SYNDEXYNDEX for

static communications). It turned out that including the description of these auxi-

liary processes in the SYNDEXYNDEX kernel without compromising too much efficiency

was a difficult task. To make the problem tractable, the SKIPPER-IKIPPER-I compilation pro-
cess therefore made assumptions on the topology of the target architecture (it had to

be ring-interconnected). These assumptions, along with the increased size and com-

plexity of the SYNDEXYNDEX kernel, lowered the portability of the applications developed

Fig. 9. SKIPPER-1KIPPER-1 performance figures.
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with SKIPPER-IKIPPER-I (compared to SKIPPER-OKIPPER-O). Finally, the hybrid intermediate repre-

sentation of SKIPPER-IKIPPER-I implicitly relied on a ‘‘flat’’ execution model and was defi-

nitely not suited for implementing nested skeletons.

3.3. Hierarchical task graphs––SKIPPER-2

In SKIPPER-IIKIPPER-II, we turned to a homogeneous intermediate representation of pro-
grams as hierarchical task graphs. This design choice was made in order to overcome

the difficulties raised by hybrid representations (such as that used in SKIPPER-IKIPPER-I) and

to solve the problem of skeleton nesting in a systematic way. To do so, all skeletons

of the SKIPPERKIPPER repertoire were viewed, at the implementation level, as specialized in-

stances of a generic skeleton, called TF-IITF-II. 19 The operational semantics of the TF-IITF-II

skeleton is basically the one of a task farming skeleton: a master process doles out

tasks to a pool of worker (slave) processes, but here a task can be either a sequential

function to be computed or another skeleton to be run. The intermediate represen-
tation takes the form of a tree of TF-IITF-II skeletons. It is computed by another version

of the CAMLFLOWAMLFLOW front-end, which uses alternate definitions of the SCMSCM, DFDF and TFTF

skeletons as specialized calls to the TF-IITF-II higher-order function. This step is illus-

trated in Fig. 10 where a program making using of three SCMSCM skeletons (two of them

19 For Task Farming, version II.

Fig. 10. Intermediate representation of skeletal programs within SKIPPER-IIKIPPER-II: (a) original program

(b) intermediate representation as a tree of TF-IITF-II.
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nested) is turned into a tree of TF-IITF-II descriptors. In this tree, nodes correspond to

skeleton control processes and leaves to sequential functions (a detailed presentation

of the SKIPPER-IIKIPPER-II system can be found in [9] or in the forthcoming [10]).

Interpretation of the intermediate representation within SKIPPER-IIKIPPER-II is done at

run-time by a specialized program (the ‘‘kernel’’) running in SPMD mode on all pro-
cessors (see Fig. 11). This kernel––written in C––provides dynamic support for three

kind of services: concurrent execution of master and worker processes, inter-process

communication (using a subset of MPI-conformant routines) and handling of shared

resources such as the worker pool. Whenever a skeleton needs to be run, either as a

‘‘top-level’’ node (on the spine of the TF-IITF-II tree) or as a nested instance, a new copy

of the kernel is launched on the local processor. This copy acts as the master of the

skeleton. It uses the free resources (idle processors) to allocates new workers. When

all resources are busy, the execution of worker processes is sequentialized on the pro-
cessor running the master process.

Assessment. SKIPPER-IIKIPPER-II was the first version to use a fully dynamic implementation

mechanism for skeleton-based programs. This has several advantages. First, in terms

of expressivity, since arbitrary nesting of skeletons is naturally supported. The intro-

duction of new skeletons is also facilitated, since it only requires giving their transla-

tion in terms of TF-IITF-II. Portability remains acceptable since porting applications to

new architectures only requires the porting of the run-time kernel. This, in practice,

turned out to be a relatively straightforward task. The approach used in SKIPPER-KIPPER-

IIII also provides automatic load-balancing, since all mapping and scheduling decisions

are taken at run-time, depending on the available physical resources. In the same vein,

sequential emulation is obtained ‘‘for free’’ by just running the program on a single

processor. The major problems with SKIPPER-IIKIPPER-II are efficiency and predictability.

As regards efficiency, several experiments [9,10] have shown that the dynamic pro-

cess distribution used in SKIPPER-IIKIPPER-II may entail a significant performance penalty.

This has been proved to be true specially for

• applications exhibiting a low compute vs communication ratio (compared to a

C+MPI implementation, the SKIPPER-IIKIPPER-II kernel performs more communications,

for exchanging data between inner and outer masters in particular);

Fig. 11. Compilation path in the SKIPPER-IIKIPPER-II parallel programming environment.
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• applications relying on fine-grain parallelism (because shared resources are han-

dled in a centralized manner in SKIPPER-IIKIPPER-II, each worker allocation requires a pair

of communications to a particular processor; this becomes a bottleneck when the

grain decreases, i.e., when the number of worker processes increases);

• platforms not supporting multi-processing at the processor level (in this situation,
some processors may end up running only one master process, with a very small

load factor, leading to poor global efficiency. 20).

Furthermore, the fully dynamic approach used in SKIPPER-IIKIPPER-II makes performance

prediction very difficult because, in this model, processors can switch from master to

worker behavior depending only on actual input data (there is no ‘‘fixed’’ mapping

for dynamic skeletons as in SKIPPER-IKIPPER-I). Even the interpretation of execution pro-

files, generated by an instrumented version of the kernel, turned out to be far from
trivial. This point raises a pragmatic problem within a programming methodology

based upon experimental validation of solutions: here, one not only needs to obtain

a running prototype quickly, but also to be able to understand why a given prototype

exhibits poor run-time performances. 21

3.4. Dynamic data-flow––SKIPPER-D

The implementation of SKIPPER-DKIPPER-D started in 2000 in response to the problems
identified with SKIPPER-IIKIPPER-II version. The design of SKIPPER-DKIPPER-D was inspired by results

obtained by Danelutto on the Macro Data-Flow (MDF) execution model for skel-

etons [12]. This model is very similar to the one used in SKIPPER-OKIPPER-O: skeleton-based

parallel programs are compiled down to data-flow graphs, in which nodes corre-

spond to sequential functions (‘‘macro-instructions’’) and arcs to data dependencies

between these functions. But, like Danelutto and unlike SKIPPER-OKIPPER-O, a dynamic inter-

pretation mechanism is used for executing these graphs. This mechanism relies on a

set of distributed data-flow interpreters, running in SPMD mode on all processors of
the target architecture. SKIPPER-DKIPPER-D extends the MDF execution model proposed by

Danelutto in order to implement arbitrary nested data or task farm skeletons. For

this purpose, the SKIPPER-DKIPPER-D runtime relies on the tagged-token data-flow interpreta-

tion technique [1,2]. This technique basically allows several concurrent activations of

a single sequential node to overlap in time; it associates a unique tag with each ac-

tivation, and each data token also carries a tag that specifies the particular activation

to which it belongs. Skeletons involving run-time bounded iterations and/or recur-

sion, and nested in an arbitrary way, can then be represented as cyclic data-flow
graphs. This is illustrated in Fig. 12 with the formulation as a tagged-token MDF

graph of a program involving two nested DFDF skeletons (in this figure, tags are de-

noted as superscripts). The MDF graph uses a pair of special nodes called iter

and endf. Iter accepts a list of data items and generates distinct result tokens, each

20 In the multi-processing case, the processor can be shared between master and worker processes.
21 By contrast, the profiling facilities offered by SKIPPER-IKIPPER-I (and set out in detail in [27]) were much

easier to exploit.
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carrying one data item and a distinct tag. These tokens trigger distinct firings of the

subsequent nodes. The tokens resulting from these firings are collected by the endf

node and accumulated using the acc sequential function. A more detailed account

of this mechanism can be found in [24].

Fig. 13. The run-time system of SKIPPER-DKIPPER-D.

Fig. 12. Nested farm skeletons under the tagged-token MDF model.
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Like its predecessors, the SKIPPER-IIKIPPER-II system can be divided into a compile-time

system and a run-time system. The latter implements a (centralized) tagged-token da-

ta-flow interpreter and the former produces the MDF graph for this interpreter from
a high-level skeletal program specification.

The run-time system of SKIPPER-DKIPPER-D is sketched in Fig. 13. Like Danelutto�s system,
it relies on an SPMD approach: all the processors (nodes) of the target architecture

run the same program, which is the result of the compilation of the user code (C se-

quential functions) and the interpreter code. The interpreter itself involves several

threads of execution: a dispatch thread, which fetches macro-instructions (sequen-

tial functions to be computed) from a pool of fireable instructions and sends them to

the worker threads, a collect thread, which receives results from the worker
threads and updates the instruction pool accordingly and several 22 worker threads

for computing sequential functions. The dispatch thread fetches idle workers from

a centralized pool, in which all worker threads register at initialization and which is

subsequently updated by the update thread upon reception of results.

Fig. 14. The compile-time system of SKIPPER-DKIPPER-D.

22 At least one per processor.
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The compile-time system is sketched in Fig. 14. It produces the application-specific

data needed to customize the run-time interpreter, i.e., the MDF representation of

the program used to build the initial instruction pool and the code of the sequential
C functions to be integrated with the custom run-time interpreter. The MDF graph is

generated by the CAMLFLOWAMLFLOW tool. This offers a way, as in previous versions of SKIP-KIP-

PER,PER, to describe skeletons entirely in CAMLAML as higher-order functions.

Assessment. The main contribution of SKIPPER-DKIPPER-D is to provide an all-encompass-

ing intermediate representation for all skeletons. This representation allows arbitrary

combination (including nesting) of skeletons, thanks to the tagged-token interpreta-

tion mechanism. SKIPPER-DKIPPER-D therefore definitely solves the expressivity problem, at

least for our repertoire of skeletons. Experimental results, obtained with a prototype
run-time system (written in OBJECTIVEBJECTIVE CAMLAML) for synthetic applications on a clus-

ter of workstations are reported in [24] and in Fig. 15. They show good speedups and

a small overhead (compared with hand-written C+MPI code). Moreover, these ex-

periments have shown that, at least for coarse and medium-grained computation

schemes, and contrary to SKIPPER-IIKIPPER-II, the mechanism used for handling nesting does

not entail a significant performance penalty. Together with those reported by Dane-

lutto in [13], these results confirm the merits of dynamic MDF execution models with

respect to template-based ones. SKIPPER-DKIPPER-D run-time performances could be further
improved by integrating some optimization techniques described in [13]. These tech-

niques include a more sophisticated management strategy of the instruction pool

(based on high/low water marks), local caching of data on worker nodes and, most

noticeably, a distributed interpreter implementation. The current SKIPPER-DKIPPER-D imple-

mentation relies on a centralized data-flow interpreter and a rudimentary scheduling

strategy for fireable instructions and is unlikely to provide comparable performances

in cases of very irregular fine-grained computations. Performance predictability is

clearly harder to obtain than with template-based implementation systems but does
not seem an intractable problem (as in SKIPPER-IIKIPPER-II). The interpretation of profiling

results is also easier than with SKIPPER-IIKIPPER-II, especially if sophisticated visualization

tools such as jumpshot [28] are provided. The portability of the SKIPPER-DKIPPER-D run-

Fig. 15. SKIPPER-DKIPPER-D performance figures (DFDF skeleton).
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time system on architectures built from specialized or digital signal processors is cur-

rently limited by the fact that it is written in OBJECTIVEBJECTIVE CAMLAML and uses bytecode

threads. But the runtime could easily be rewritten in C for these systems. 23 In this

case, threads can be emulated using hardware context switching mechanisms (as ev-

idenced by the implementation of the SYNDEXYNDEX kernel for DSPs [18]).

4. Comparative assessment

Table 1 summarizes our assessment of the successive versions of SKIPPER.KIPPER. In this

table, we have tried to rate each version in terms of the four criteria explicited in Sec-

tion 3: efficiency (Eff ), expressivity (Expr), portability (Port) and predictability

(Pred ). For this we use a relative ‘‘score’’ between 1 (poor) and 4 (excellent). The first

column recalls the underlying intermediate representation (IR): Synchronous Data

Flow Graphs, Parametric Process Networks, Hierarchical Task Graphs and Dy-

namic Data Flow Graphs. The second column gives the distribution and scheduling
strategy (S ¼ static, D ¼ dynamic).

The evolution from SKIPPER-OKIPPER-O to SKIPPER-DKIPPER-D can be viewed as a progressive

shift––evidenced by the growing part of the run-time system in the implementa-

tion––from static approaches, offering excellent performances and predictability at

the price of limited expressivity, to more dynamic approaches, trading off efficiency

and/or predictability in favor of expressivity.

Fully static approaches, as in SKIPPER-OKIPPER-O, are attractive in our context of embed-

ded reactive applications because they minimize the resources needed to implement
the algorithm and allow strict real-time bounds to be computed. But within a pro-

gramming methodology dedicated to the fast prototyping of solutions––and mainly

intended for algorithmicians, not parallel programming specialists––these ap-

proaches were finally found to be too restrictive. For instance, it is often possible

to reformulate an existing vision algorithm––defined in terms of dynamically allo-

cated data structures as lists or trees––so that it only uses fixed-size arrays and

can be parallelized using a ‘‘static’’ skeleton (like SCMSCM); but we found that it is not

Table 1

Comparative assessment of SKIPPERKIPPER versions

IR D/S Eff Expr Port Pred

SKIPPER-OKIPPER-O SDFG S/S 4 1 4 4

SKIPPER-IKIPPER-I PPN S/S+D 3 2 1 3

SKIPPER-IIKIPPER-II HTG D/D 2 4 3 1

SKIPPER-DKIPPER-D DDFG D(S)/D 3 4 4 2

23 The current implementation is less than 500 lines of OBJECTIVEBJECTIVE CAMLAML code. We think that a re-

implementation in C would be in the range of 1000-2000 loc, perfectly suited for processors with limited

memory.
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reasonable, even desirable, to do this reformulation at the prototyping level, when

being able to quickly test various algorithmic and/or parallel implementation

schemes turns out to be more important than obtaining optimal performances.

Moreover, some algorithms are intrinsically not amenable to static implementation

because the size of the input data and/or the duration of the sequential functions can-
not be reliably estimated at compile time.

On the other hand, the conclusions given in Section 3.3 show that approaches re-

lying on a fully dynamic run-time system, as SKIPPER-IIKIPPER-II, may raise efficiency and

predictability or observability problems that conflict with our prototyping goals

and/or target platforms (although these approaches might prove useful in other ap-

plication domains).

In this light, we believe that the SKIPPER-DKIPPER-D approach offers the best trade-off be-

tween the conflicting above-mentioned criteria. The data-flow interpretation mecha-
nism is ‘‘mostly dynamic’’ 24 but its run-time behavior can be more easily modelized

and performances do not suffer from hardly understandable performance drops due

to unpredictable process allocation. 25

5. Related work

In the past decade, the issues related to skeleton-based parallel programming have
been investigated by several research groups. 26 But few of them have produced full-

fledged software environments that can be used to implement complex, realistic ap-

plications.

The Pisa Parallel Programming Language (P3L) project [3] is one of these pro-

jects. The P3L system includes both task parallelism (farm, pipe) and data parallelism

(map, reduce, scan). Some control skeletons (loop, seq) allow the definition of sequen-

tial P3L modules and the iteration of skeleton compositions. Like SKIPPERKIPPER, P3L

uses C to express the sequential parts of the application but, unlike SKIPPERKIPPER, the
skeletal structure of the application is denoted using C-like syntax of data types

and skeletons. The first compilers generated code for a Transputer-based Meiko

CS/1 MIMD machine and for PVM running on a cluster of UNIX workstations.

A more recent version [6] generates C+MPI code for PC running Linux and Fujitsu

AP1000. P3L has been used to implement applications such as optical character re-

cognition [11], ray tracing and circuit test generation.

The Heriot–Watt group has investigated the use of skeletal-based methodology

for the parallelisation of vision algorithms [20,22,23]. Parallelism is extracted and ex-
ploited from programs written entirely in Standard ML. Unlike SKIPPERKIPPER or P3L, in

which skeletons are viewed as explicit indications to the compiler of which parallel-

ism will be deployed and where––they take an implicit approach, in which skeletons

24 Scheduling is done at run-time but mapping of threads to processors is done at compile-time.
25 As in SKIPPER-IIKIPPER-II.
26 See for example [29] for a comprehensive survey.
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are viewed as possible realizations of common higher-order functions (the decision is

taken by the compiler, on the basis of profiling information collected by an instru-

mentation phase). Results have been given for a Meiko CS, a Fujitsu AP-1000 and

a 32-node Beowulf.

The Skil project [4] is another system relying on skeletons to provide high level
parallel programming. Skil is an imperative, C-based language enhanced with a se-

ries of functional features such as higher-order functions and polymorphism. Com-

pile-time instantiation of these features results in very efficient code (approaching the

efficiency of direct C implementations). Skil focuses on data-parallelism and provides

built-in types for manipulating distributed data-structures. On numerical applica-

tions such as PDE solvers [5] Skil has demonstrated good absolute performances

and scalability (24 speedup for 32 processors, 87 on 128 processors) on a 1024-node

Parsytec multi-processor.

6. Conclusions and future work

Several lessons were learnt when developing and using the SKIPPERKIPPER system, both

at the application level (from a user�s point of view) and at the implementation level

(from an implementor�s point of view).
At the application level, the SKIPPERKIPPER project has provided a convincing demon-

stration of the merits of skeleton-based parallel programming techniques. These

conclusions are supported by realistic case studies, carried out with the help of

full-fledged parallel programming environments, by people who were not parallel

programming specialists in the first place. First, the ‘‘off-the-shelf ’’ style provided

by the skeleton approach effectively provides dramatic savings in development ef-

forts. These savings make it possible to adopt a truly experimental approach in the

design and implementation of applications, a key property in our context. The

price to pay is a decrease in performance (compared to hand-crafted parallel code)
but, for most of the realizations presented here this can be kept reasonable and

was viewed as acceptable, anyway, with regard to the above-mentioned benefits.

Second, within a given application domain, such as reactive embedded vision, skel-

etons may be viewed as a very effective way to encapsulate and reuse the expertise

gained by skilled parallel programmers. This pragmatically solves the classic ‘‘com-

pleteness’’ problem often associated with skeleton-based parallel programming

methodologies––namely the fact that, in theory, nothing can guarantee that a given

set of skeletons will be sufficient to express every parallel algorithm: in our case,
the definition of the skeleton basis was made in a bottom-up manner starting from

an identifiable corpus of applications and/or expert knowledge and was explicitly

targeted towards low to mid-level vision algorithms. Finally, the explicit, ‘‘menu-

driven’’ approach proposed by SKIPPERKIPPER could be criticised for requiring a mini-

mum understanding of the skeleton operational semantics to be used and therefore

that it cannot be used as a fully automatic parallelizing tool. Our answer, moti-

vated by our experience in developing complex vision applications with algorithmi-

cians, is that skeletons actually provides an effective common ground for sharing
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expertise between image processing and parallel programming specialists: the for-

mer no longer have to deal with implementation details and the latter can treat ap-

plication-specific functions as black boxes.

At the implementation level, the SKIPPERKIPPER project has led us to thoroughfully

investigate the relative merits and flaws of static and dynamic approaches for im-
plementing skeletons. As stated in Section 3.4, we now believe that a macro data-

flow representation of skeleton-based parallel programs is probably the best

choice, because it can be associated with a wide spectrum of operational semantics

(from purely static synchronous to dynamic tagged-token). This conclusion is sim-

ilar to that drawn by Najjar et al. in [21] who underline the ‘‘universality’’ of the

data-flow model by exhibiting potential application domains both in the ‘‘soft-

ware’’ domain (parallel programming on clusters of workstations for instance)

and in the ‘‘hardware’’ domain (design of application-specific circuits for instance).
In this context, we are now investigating the possibility of developing transforma-

tional rules to derive a static formulation of an algorithm automatically (using a

synchronous data-flow execution model) from a dynamic one (based upon a tagged-

token execution model). Our ultimate goal, motivated by our experience and needs

in reactive vision applications, is to be able to specify, with the same skeletal formal-

ism both ‘‘hard’’ (time-critical) parallel applications (built from static skeletons such

as SCMSCM) and ‘‘softer’’ applications (built from dynamic skeletons such as DFDF) which

can tolerate the run-time unpredictability implied by interpreter-based implementa-
tion techniques. Recent work on graph factorization techniques [14] has provided

some insights on how to do this in the context of compile-time bounded iterations.

We are currently working to extend this scheme to generic data and task farming skel-

etons (the fundamental issue being: what constraints do we have to put on the tagged-

token data-flow graph formulation of an algorithm––that can always be interpreted

dynamically––to make it amenable to static implementation).
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