
Modular VLIW processor based on FPGA
for real-time image processing

VINCENT BROST, DEBYO SAPTONO, CHARLES MEUNIER, FAN YANG, DOMINIQUE GINHAC

LE2I-CNRS 5158 Laboratory, University of Burgundy, 21078 Dijon France

vincent.brost@free.fr, debyo.saptono@u-bourgogne.fr, charles.meunier@iut-dijon.u-bourgogne.fr, fanyang@u-bourgogne.fr

Résumé - Nous proposons dans cet article un outil de prototypage rapide des applications de traitement d’images sur
des systèmes embarqués à base de FPGA. Le parallélisme intrinsèque au niveau des instructions a été
automatiquement extrait à partir du code du source C (ou C++). Le modèle VHDL d’un processeur VLIW (Very
Long Instruction Word) est généré et synthétisé pour le composant de type FPGA. L’objectif est de garder la
souplesse de la programmation classique des processeurs et en même temps, de profiter des hautes performances du
FPGA pour des applications en temps réel. En particulier, nous réalisons un modèle VHDL de processeur VLIW
avec un jeu d’instructions variable et ciblé pour une application donnée. Ceci permet de réaliser le prototypage
rapide sur le FPGA d’une manière optimale. L’approche a été testée et validée avec un ensemble d’algorithmes de
traitement d’images basiques couramment utilisés, à l’aide d’un FPGA Virtex-6. Elle présente de multiples
avantages : flexibilité, modularité, performance et réutilisation.

Abstract - This paper describes research result about enabling the VLIW processor model for real-time processing
applications by exploiting FPGA technology. Our goals are to keep the flexibility of processors in order to shorten
the development cycle, and to use the powerful FPGA resources in order to increase real-time performance. We
present a modular VLIW VHDL processor model with a variable instruction set and a customizable architecture
which allow exploiting intrinsic parallelism of a target application using advanced compiler technology and
implementing it in an optimal manner on FPGA. Some common algorithms of image processing were tested and
validated on an FPGA Virtex-6 based board using the proposed development cycle. Our approach applies some
criteria for co-design tools: flexibility, modularity, performance, and reusability.

1 Introduction
Electronic embedded systems have an important role

in real-time signal and image processing applications
such as process control, telecommunication, satellites,
and nowadays. Systems-on-Chip (SoCs) have become
omnipresent because of the advances in design
technology that make it possible to build complete
systems containing different types of components on the
same chip [1]. In this context, the FPGA, with its
reconfigurability and easy integration capacity becomes
a key solution for rapid prototyping of embedded
systems, because using this electronic component, we
are able to quickly create a rapid and fully functional
prototype that can emulate and verify solutions, or even
be embedded into the final system.

In order to design and synthesize FPGA based

systems, a hardware description language such as
VHDL or Verilog is necessary. Most hardware
description languages are inherently concurrent and
most high-level software languages are not considered
trivial for non-hardware developers. One of the key
factors that encourage the wide diffusion of electronic
devices is the improvement of the man-machine
interface, where the great challenge is to allow the use
of complex electronic systems by software developers
[2].

In this article, we propose an approach that targets
rapid prototyping of signal and image processing
applications on the FPGA. Firstly, algorithms are
programmed in C as if they were to be executed on a
classical processor. Then the advanced compiler
OpenIMPACT [3] converts the original program into an
independent language called Lcode. This intermediate
representation provides Instruction Level Parallelism
(ILP) which is analyzed and reorganized to Very Long
Instruction Word (VLIW) instructions. Finally, a
modular VLIW VHDL processor model with a variable
instruction set is generated and implemented optimally
with FPGA technology.

2 Application development cycle overview
Based on our previous works consisting of multi-DSP

(Digital Signal Processor) implementation into FPGA
devices [4], Figure 1 illustrates the recent approach
composed of four stages. We use OpenIMPACT
(Illinois Micro-architecture Project utilizing Advanced
Compiler Technology) [3] to compile the original
source code into an assembly intermediate
representation “Lcode”. This produced Lcode is
optimized in ILP, for an Instruction Set Architecture
(ISA). The primary/native ISA can be a parametric
VLIW architecture. It admits processors of different
composition and scale, especially with respect to the
amount of parallelism offered. The customizable
parameter space includes the number of clusters in a

mailto:vincent.brost@free.fr
mailto:debyo.saptono@u-bourgogne.fr
mailto:charles.meunier@iut-dijon.u-bourgogne.fr
mailto:fanyang@u-bourgogne.fr

multi-cluster processor, the make up of each cluster
(types of functional units, the composition of the
register files), and the instruction set including operation
latencies and descriptors that specify when operands
may be read and written, instruction format and
resource usage behavior of each operation. The
architecture instruction set is akin to the RISC load-
store architecture, with standard arithmetic and memory
operations.

Figure 1: Proposed application development cycle.

 We have developed a software generator which
performs Lcode analysis in order to expose ILP and
extract need used resources for a target application. This
allows us to construct hardware resource database. The
generator executes analysis in several phases. Firstly, it
examines sequentially all instructions of Lcode and
notes those can be executed in parallel with previous
instructions (without data dependences). Then, it
analyzes basic operation types and used registers of
each parallel cycle and performs some optimizations
(register number reduction, possible execution order
change) respecting the consistency of the original
Lcode. Finally, a parallel operation graph is generated in
order to construct hardware resource database. Figure 2
displays the analysis and generator obtained results for
the Sobel filtering processing. We can see that the main
loop has be performed using 10 cycles after
parallelization. Here, Ri (i=0-7) corresponds to a
register and ld to a data loading from memory. The lsl
represents data left shift. C indicates a constant. For
example, at the step (cycle) 6, two operations have been
simultaneously realized: Add R0, R6 R0, and Sub R2,
R5 R2.

Application development
in C & Compilation
using OpenIMPACT

Sequential Lcode

Lcode analysis in order to
generate parallel execution
graph & extract the used

hardware resources

Hardware database

Using Lcode analysis and graph model generation
results, a modular VLIW processor can be composed:
for a target application, we construct its structure with
know minimum need hardware resources and describe it
in VHDL language (see section 3). It is noted that the
VLIW processor is totally customizable and optimal for
target application: number of functional units, operation
types and used registers are just minimum necessary for
give algorithm. Different pipelined levels of VLIW
processors in order to control execution-time scheduling
has been described in VHDL code and implemented
onto an FPGA. All generated VHDL files for a target
application have been synthesized using Xilinx ISE
tools [5] to realize hardware implementation.

VHDL code generation
of the modular VLIW

processor model
corresponding

to the application

Figure 2: Operation graph generated by our software tool for the Sobel filter: each operation is realized
 using two operands from two registers and memorizes the result in a register.

VHDL files

Synthesis / implementation
on FPGA

using Xilinx ISE tools

3 Experiment results
In order to test and validate our development cycle of

rapid prototyping, we have chosen three widely used
low-level computer vision algorithms: filter Sobel for
performing edge extraction, convolution with a mask of
3X3 and image erode. Our experiment results are
obtained using an Intel Pentium 4 computer, with a
clock speed of 2.8 GHz. The OpenIMPACT
environment was pre-installed with Linux 2.6.22.5
kernel as underlying operating system and target
hardware architecture is the Virtex 6-xc6vlx75T.

Figure 3 displays the modular VLIW processor

architecture for the Sobel filtering application. In
agreement with the Lcode analysis and graph model
generation results; this modular VLIW processor is
composed of 7 functional units (2 Add, 2 Sub, 2 Abs
and 1 Shift left). For example, two operations have been
simultaneously realized: Add R0, R6 R0, and Sub R2,
R5 R2 at the 6th cycle (see Figure 2). We have also
generated a VHDL file to perform execution scheduling
of the VLIW processor by multiplexer positioning (see
slct signals in Figure 3).

2 arithmetic operators are triggered. The add(2)

recuperates first operand (R2) from mux_add2_e0 and
second (R6) from mux_add2_e1 and performs addition
operation. The contain result is stored in the register R0.
In the same manner, the sub(2) performs subtraction
with two operands (R2 and R5) and transfers this
subtraction result in the R2 register.

Based on the modular VLIW processor architecture,

VHDL description is automatically generated.
Synthesis and simulations of all VHDL code for the
target algorithm are realized using the Xilink ISE tools.
Table 1 shows Lcode analysis and parallelism extraction
results for three basic image processing algorithms.
Obtained experiments results concerning VHDL code
synthesis and hardware simulation are respectively
gives in Tables 2, 3 and 4. We can note that an average
acceleration of 3X has been obtained for these three
basic image processing using our graph model of
parallel execution. In general, these algorithms use a
small percentage of hardware resources available on
FPGA: 0.16% of register Slices, 0.77% of LUT slices,
and 73% of Block RAMs. These results have been
obtained with an image size of 512x512 pixels and
intern Block RAMs of FPGA are used in order to store
original and resulting images.

We also made up hardware implementation

performances comparisons between the DSP TMS C62
and the FPGA Xlink Virtex 6-xc6vlx75T using
proposed application development cycle. These
preliminary experiment results illustrate multiple
advantages of this co-design tool: better processing
speed performances, low level of consumption and more
of flexibility using modular processor model.

Tab 1: Lcode analysis and parallelism extraction results.

Algorithm Sobel Conv. Erode
Number of

sequential cycle
27 14 64

Number of parallel
cycle

10 9 14

Acceleration 2.7 1.6 4.6

Tab 2: Hardware implementation results for the Sobel
filtering: Fr = 420 MHz.

Logic
utilization

Used

Available

Ratio

Number of
Register Slice

132

93120

0.14%

Number of LUT
Slice

409

46560

0.88%

Number of
Block RAMs

114

156

73%

Tab: 3 Hardware implementation results for the 3x3
convolution: Fr = 247 MHz.

Logic
utilization

Used Available Ratio

Number of
Register Slice

76

93120

0.08%

Number of LUT
Slice

113

46560

0.24%

Number of
Block RAMs

114

156

73%

Tab 4: Hardware implementation results for the image erode:
Fr = 400 MHz.

Logic
utilization

Used Available Ratio

Number of
Register Slice

244

93120

0.26%

Number of LUT
Slice

547

46560

1.2%

Number of
Block RAMs

114

156

73%

4 Conclusions and perspectives
In this paper, we present a new co-design SW/HW

approach for computer vision applications. The
proposed development cycle allows non-electronic
specialists to realize rapid prototyping of image
processing. Since they can transform automatically their
C codes in VHDL description for FPGA
implementation in an optimal manner. Our method is
based on advanced compiler technology and uses
minimum necessary hardware resources for a target
application thanks to modular VLIW processor model.

Figure 3: Modular VLIW processor structure for the Sobel filtering algorithm.

Our approach has been tested and validated using

three common image processing algorithms: Sobel
filter, Convolution 3x3 and image erode. In general,
these algorithms use a small percentage of hardware
resources available on FPGA and this allows
considering others complexes post processing of image
in the same FPGA device. Preliminary experiment
results illustrate multiple advantages of this co-design
tool: flexibility, modularity, performance, and
reusability.

In perspectives, we want to implement multi-
modular VLIW processors on FPGA in order to build
SPMD (Single Program Multiple Data) machine. This
allows greatly accelerating computation speed.

For application aspect, we want to test the proposed
method for a complete chain of pattern recognition:
palmprint processing for identity verification. This
allows us to observe and evaluate behaviors of our tool
for complexes and less regular applications.

References

[1] D. Gizopoulos, “ Low-cost, on-line self-testing of

processor core based on embedded software routines,”
Microelectron. J. 35, 443– 449, 2004.

[2] M. A. Aguirre, J. N. Tombs et al., “Microprocessor and
FPGA interfaces for in-system co-debugging in field
programmable hybrid systems,”
Microprocess. Microsyst. 29 (2–3), 75–85, 2005.

[3] Gelato.org,“Impact Advanced Compiler Technology”,
http://gelato.uiuc.edu, 2009.

[4] V. Brost, F. Yang, M. Pandaivone, and N. Farrugia,
“Multiple modular VLIW processors based on FPGA,”
Journal of Electronic Imaging, SPIE, 16(2):110, April
-June 2007.

[5] ISE, 2009. ISE design suite 11.URL
http://www.xilinx.com/tools/designtools.htm

http://www.xilinx.com/tools/designtools.htm

