
RBF NEURAL NETWORKS APPLIED TO FACE TRACKING AND
RECOGNITION

Laboratory LE2I, University of Burgundy, 21000 DIJON, France

Abstract

This paper describes a trainable system capable of detecting and tracking faces in video sequences. In developing this
system, we have used a RBF neural network to locate and categorize faces of different dimensions. The face tracker
can be applied to a video communication system which allows the users to move freely in front of the camera while
communicating. The system works at several stages. At £rst, we extract useful parameters by a low-pass £ltering to
compress data and we compose our codebook vectors. Then, the RBF neural network realizes detection and tracking
of faces.

1 Introduction

A system capable of doing face localization and recogni-
tion in real time has many applications in intelligent man-
machine interfaces and in other domains such as very low
bandwidth video conferencing, virtual actor and video e-
mail. We describe a trainable system capable of detecting
and tracking faces in video sequences using a RBF neural
network.

The Radial Basis Function (RBF) allows to make learn-
ing in neural networks. This function makes it possible to
design a network with a good generalization ability and a
minimum number of nodes to avoid unnecessary computa-
tional time. The RBF method is a technique for interpola-
tion in a high dimensional space. RBF classi£ers belong
to the category of kernels classi£ers. They use an overlap-
ping formed by simple kernel functions to create complex
decision regions. RBF networks are a recent addition to the
face tracking and analysis model because their main advan-
tages are computational simplicity and robust generaliza-
tion. Mark Rosenblum and al.[1] have developed a system
of human expressions recognition from motion based on a
RBF network architecture. Howell and Buxton have per-
formed a learning identi£cation with RBF method[2].

Our aim is to elaborate a quite ef£cient algorithm us-
ing a RBF network which can track and recognize faces
of different dimensions in natural video sequences in any
background. In the future, we want to implant this algo-
rithm on an FPGA (Field Programmable Gate Array) device
associated with an arti£cial retina. In the second section,
we present the RBF network model. Learning process and
node reduction are described. We show the system of face
tracking developed in the third section. We exhibit the cho-
sen method : extraction of useful parameters, RBF network

architecture used. We display the results and performances
we have obtained with a video sequence.

2 Architecture of the network

The architecture of a RBF network[3] [4] is composed of
3 layers (see Figure 1). Each hidden node computes a ker-
nel function on input data and the output layer achieves a
weighted summation of the kernel functions. Each node
is characterized by 2 important associated parameters : its
center and the width of the radial function. A hidden node
computes the highest output value when the input data is
close to its center and this output decreases as the distance
from the center increases. Several distances can be used
to estimate the distance from a center but we usually use
the Euclidian distance. A Gaussian function is taken as
the kernel function[5]. The whole network con£guration is
achieved by calculating centers and widths associated with
the hidden nodes and the weights of the connections from
the hidden layer to the output layer.

Input data are fully connected to the hidden layer and
this one is also fully connected to the output layer. Each
input vector has M components. There are I RBF nodes
in the hidden layer. In addition, each RBF node is charac-
terized by 2 parameters, the center ci and the width wi of
its associated Gaussian function. The output layer contains
J nodes Oj representing J classes. The connections from
hidden nodes to output nodes are weighted by multiplica-
tion values. Finally, each output node yields a weighted
sum of its inputs.



Input layer Centers Output layer

Figure 1: Architecture of a typical RBF network.

2.1 Learning process

At £rst, the learning problem is to determine the appropriate
Gaussian centers ci and widths wi. Then, the RBF learning
process consists in de£ning some functions fj to satisfy the
condition :

fj(xp) = ypj p = 1, ..., P j = 1, ..., J (1)

in which P and J are respectively the total number of train-
ing patterns and the number of classes. (xp, ypj) are the
p-th training vectors, ypj being the response that the output
j have to yield when the xp training pattern is presented to
input. f(x) can be written as :

f(x) = ΣI
i=1aijΦ(‖x − ci‖) (2)

with i = 1, ..., I, j = 1, ..., J and Φ is a Gaussian function
:

Φ(‖x − ci‖) =
1√

2πwi
2
exp{−‖x − ci‖

2wi
2

} (3)

A pseudo inverse matrix technique yields the weight aij

associating the hidden layer with the output layer. A way to
design the network could be to associate a Gaussian func-
tion with each training point in the M -dimensional space.
But in most of the applications, the number of training vec-
tors is large and this technique becomes inef£cient. More-
over, even if the number of training vectors is short, it’s
better to design a network as simple as possible.

2.2 Node reduction

Initially, we have P training points in a M-dimensional space.
If it is possible, our aim is to reduce the number of useful
points. The algorithm which we use is inspired on a clus-
tering algorithm proposed by Musavi[6].
Initially, each training point is a cluster.

1. Take any cluster Ck.

2. Find the nearest point Cl of the same class by using
the Euclidian distance.

3. Compute the mean of this 2 clusters. The width of
this new cluster is ‖Ck,Cl‖

2 + wk. The new cluster is
the new mean associated with its width.

4. Compute the distance D from the new mean to the
nearest point of all other classes.

5. If D > λR, then accept the merge of Ck and Cl and
start again from step 2. If the condition is not satis-
£ed, reject the merge and recover the 2 original clus-
ters then restart from step 1.

6. Repeat step 1 to 5 until all clusters of each class be
used.

Finally, we obtain the Gaussian centers ci and their widths
wi(i = 1, ..., I ≤ P ) of the hidden nodes.

λ is the ”clustering parameter” (λ is a positive number).
When λ increases, node reduction is limited, but the accu-
racy increases. We use the value λ = 2 in our case. We can
see (Figure 2) the result after using this clustering algorithm
for 2 classes in a 2D feature space.

CATEGORY A

CATEGORY B

Figure 2: Regions mapping in a 2D space.

Notice that we obtain 2 non linear decision regions. In
fact, RBF can map spaces of any shapes (non-linear, con-
vex, disjoint spaces).

In a N-dimensional space, the decisions regions are a
set of N-dimensional hyperspheres.

3 Experiments : Faces location and
recognition

3.1 Image sequence

Our sequence contains 74 images of 2 persons moving in
a room. This sequence was recorded in brightness format.
The original resolution is 240 × 320. The frame rate is 10



Hz. Any special lighting was used. Notice that the size of
the faces varies from 40 × 30 to 90 × 68.

At £rst, we have to learn the training faces. In our ex-
ample, we want to recognize 2 persons. We use 3 training
faces for each of them (see Figure 3). Each training face is
a window of size 40 × 30.

[] [] [] []

[] []

Figure 3: Learning faces.

3.2 First simulation : original image

The components of the training vectors are at £rst simply
the brightness values (1 byte) of the 1200 pixels in each
training face. If the lighting conditions are extreme, we can
to perform a preprocessing. This preprocessing attempts
to equalize the intensity values in across the window. We
£t a function which varies linearly across the window to
the intensity values in an oval region inside the window[7].
Pixels outside the oval may represent the background, so
those intensity values are ignored in computing the lighting
variation across the face. The linear function will approx-
imate the brightness of each part of the window, and can
be subtracted from the window to compensate for the varia-
tion of lighting conditions. We have applied this technique
to our sequence. You can see results with some faces from
the Face Yale Database (see Figure 4).

[Original

window] [Fit
linear

function]
[Lighting corrected window (linear function

subtracted).]

Figure 4: Lighting correction.

Then, the clustering algorithm £nds 2 centers and their
widths for each class (person). The RBF network is achieved
with these parameters. However, the hidden nodes are par-
tially connected to the output layer (see Figure 5). In fact,
the hidden nodes associated with one person are only con-
nected to the output node representing this one.

Input layer Centers Output layer

Figure 5: Architecture of the RBF network used.

The location and recognition is performed by extracting
all the 40 × 30 samples (scan step=1) in the scene of size
240 × 320. Each 40 × 30 mask yields 1200 components to
network input.

The performance of the system is displayed in Tab.1.
Four different results for each face are distinguished :

• Right detection and identi£cation : the person’s face is
correctly located and identi£ed.

• No detection : a face is not detected.

• Wrong detection : a face is not correctly located.

• Wrong identi£cation : a face is correctly located but not
correctly identi£ed.

Table 1: Test results
number of person in the sequence 141 100%
right detection and identi£cation 131 92.9 %

no detection 4 2.8 %
wrong detection 6 4.1 %

wrong identi£cation 0 0 %

3.3 Second simulation : features extraction

Our aim is to locate and recognize faces in a video se-
quence. So, it is very important to use a method as low
time consuming as possible. It is the reason why we have
to minimize the number of input data. Thus, a downsam-
pling is realized. So, a 1-dimensional smoothing £ltering is



necessarily performed on the original images used. Only
one brightness value out of six is taken on each line of
the images. So, the training vectors have now only 200
(5× 40) components. The clustering algorithm £nds 2 cen-
ters and their widths for each class again. The location and
recognition is realized by scanning (scan step=1) the image
240 × 320 with the 40 × 30 mask then downsampling it.
Each mask yields 200 components to network input. The
test results are presented in Tab.2.

Table 2: Test results
number of person in the sequence 141 100%
right detection and identi£cation 132 93.6 %

no detection 4 2.8 %
wrong detection 5 3.6 %

wrong identi£cation 0 0 %

We can see that the results are very close for both simu-
lations. However, the feature extraction yields input vectors
with less components. So, we have reduced the computa-
tional time a lot. Therefore, the hardware implementations
are feasible to realize a real-time recognition of faces. Here
are some result images :

[result00.]

[result10.]

4 Conclusion and perspectives

Our next aim is the implementation of a face tracker and
recognizer on a chip as FPGA, DSP or ASIC. Thus, we
need an ef£cient method as simple as possible. That is the
reason why we use a RBF network whose architecture is
quite simple. We have proposed an algorithm to simplify
the network architecture (hidden nodes reduction). In addi-
tion, we have to use a fast feature extraction to reduce the
size of the input vectors. Finally, we will ratify our method
using other image sequences tests then we will realize the
hardware implementation.

[result25.]

[result32.]

[result50.]

[result63.]
Figure 6: Results.

References

[1] M. Rosenblum, Y. Yacoob and S.V. Larry, “Human ex-
pression recognition from motion using a radial basis
function network architecture,” IEEE Transaction on
neural networks, Vol.7, No.5, pp. 1121-1138, 1996.

[2] A.J. Howell, Y. Buxton and S.V. Larry, “Learning iden-
tity with radial basis function networks,” Neurocomput-
ing, Elsevier, Vol.20, pp. 15-34, 1998.

[3] M.J.D. Powell, “Radial Basis Functions for multivari-
ate interpolation: A review,” Algorithms for approxi-
mation, Clarendon Press, pp. 143-167, Oxford, 1987.

[4] I. Park and I.W. Sandberg, “Universal approximation
using radial basis function networks,” Neural Compu-
tations, Vol.3, pp. 246-257, 1991.

[5] S. Lee and R.M. Kil, “A Gaussian potential function
network with hierarchically self-organizing learning,”
Neural Networks, Vol.4, pp. 207-224, 1991.

[6] M.T. Musavi, W. Ahmed and al, “On the training of ra-
dial basis function classi£ers,” Neural Networks, Vol.5,
pp. 595-603, 1992.



[7] H. A.Rowley, S. Baluja, T. Kanade, “Neural Network-
Based Face Detection,” PAMI, 1998.


